Skip to main content
Log in

Apoptosis repressor with caspase recruitment domain is regulated by MAPK/PI3K and confers drug resistance and survival advantage to AML

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The apoptosis repressor with caspase recruitment domain (ARC) protein is known to suppress both intrinsic and extrinsic apoptosis. We previously reported that ARC expression is a strong, independent adverse prognostic factor in acute myeloid leukemia (AML). Here, we investigated the regulation and role of ARC in AML. ARC expression is upregulated in AML cells co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) and suppressed by inhibition of MAPK and PI3K signaling. AML patient samples with RAS mutations (N = 64) expressed significantly higher levels of ARC than samples without RAS mutations (N = 371) (P = 0.016). ARC overexpression protected and ARC knockdown sensitized AML cells to cytarabine and to agents that selectively induce intrinsic (ABT-737) or extrinsic (TNF-related apoptosis inducing ligand) apoptosis. NOD–SCID mice harboring ARC-overexpressing KG-1 cells had significantly shorter survival than mice injected with control cells (median 84 vs 111 days) and significantly fewer leukemia cells were present when NOD/SCID IL2Rγ null mice were injected with ARC knockdown as compared to control Molm13 cells (P = 0.005 and 0.03 at 2 and 3 weeks, respectively). Together, these findings demonstrate that MSCs regulate ARC in AML through activation of MAPK and PI3K signaling pathways. ARC confers drug resistance and survival advantage to AML in vitro and in vivo, suggesting ARC as a novel target in AML therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Ge X, Liu X (2009) The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 14:164–172

    Article  CAS  PubMed  Google Scholar 

  2. Li YZ, Liu XH, Zhu XM, Cai LR (2007) ARC contributes to the inhibitory effect of preconditioning on cardiomyocyte apoptosis. Apoptosis 12:1589–1595

    Article  CAS  PubMed  Google Scholar 

  3. Hong YM, Jo DG, Lee JY, Chang JW, Nam JH, Noh JY et al (2003) Down-regulation of ARC contributes to vulnerability of hippocampal neurons to ischemia/hypoxia. FEBS Lett 543:170–173

    Article  CAS  PubMed  Google Scholar 

  4. Koseki T, Inohara N, Chen S, Nunez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95:5156–5160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Heikaus S, Kempf T, Mahotka C, Gabbert HE, Ramp U (2008) Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC. Apoptosis 13:938–949

    Article  CAS  PubMed  Google Scholar 

  6. Zhang YQ, Herman B (2006) ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway. J Cell Biochem 99:575–588

    Article  CAS  PubMed  Google Scholar 

  7. Nam YJ, Mani K, Ashton AW, Peng CF, Krishnamurthy B, Hayakawa Y et al (2004) Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15:901–912

    Article  CAS  PubMed  Google Scholar 

  8. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA (2004) Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 279:21233–21238

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Qanungo S, Crow MT, Watanabe M, Nieminen AL (2005) Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei. FEBS Lett 579:2411–2415

    Article  CAS  PubMed  Google Scholar 

  10. Mercier I, Vuolo M, Jasmin JF, Medina CM, Williams M, Mariadason JM et al (2008) ARC (apoptosis repressor with caspase recruitment domain) is a novel marker of human colon cancer. Cell Cycle 7:1640–1647

    Article  CAS  PubMed  Google Scholar 

  11. Ziegler DS, Wright RD, Kesari S et al (2008) Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins. J Clin Invest 118:3109–3122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mercier I, Vuolo M, Madan R, Xue X, Levalley AJ, Ashton AW et al (2005) ARC, an apoptosis suppressor limited to terminally differentiated cells, is induced in human breast cancer and confers chemo- and radiation-resistance. Cell Death Differ 12:682–686

    Article  CAS  PubMed  Google Scholar 

  13. Wang JX, Li Q, Li PF (2009) Apoptosis repressor with caspase recruitment domain contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynamin-related protein-1. Can Res 69:492–500

    Article  CAS  Google Scholar 

  14. Wu L, Nam YJ, Kung G, Crow MT, Kitsis RN (2010) Induction of the apoptosis inhibitor ARC by Ras in human cancers. J Biol Chem 285:19235–19245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Medina-Ramirez CM, Goswami S, Smirnova T, Bamira D, Benson B, Ferrick N et al (2011) Apoptosis inhibitor ARC promotes breast tumorigenesis, metastasis, and chemoresistance. Can Res 71:7705–7715

    Article  CAS  Google Scholar 

  16. Carter BZ, Qiu YH, Zhang N, Coombes KR, Mak DH, Thomas DA et al (2011) Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML. Blood 117:780–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W et al (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Can Res 67:684–694

    Article  CAS  Google Scholar 

  18. Carter BZ, Milella M, Altieri DC, Andreeff M (2001) Cytokine-regulated expression of survivin in myeloid leukemia. Blood 97:2784–2790

    Article  CAS  PubMed  Google Scholar 

  19. Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W et al (2003) Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 17:2081–2089

    Article  CAS  PubMed  Google Scholar 

  20. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M (2002) Stroma cells prevent apoptosis of AML cells by upregulation of anti-apoptotic proteins. Leukemia 16:1713–1724

    Article  CAS  PubMed  Google Scholar 

  21. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Can Res 62:3603–3608

    CAS  Google Scholar 

  22. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  PubMed  Google Scholar 

  23. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al (2005) Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 19:1543–1549

    Article  CAS  PubMed  Google Scholar 

  24. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ (1999) Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 93:3893–3899

    CAS  PubMed  Google Scholar 

  25. Towatari M, Iida H, Tanimoto M, Iwata H, Hamaguchi M, Saito H (1997) Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 11:479–484

    Article  CAS  PubMed  Google Scholar 

  26. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al (2003) Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17:995–997

    Article  CAS  PubMed  Google Scholar 

  27. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102:972–980

    Article  CAS  PubMed  Google Scholar 

  28. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al (2006) Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 108:2356–2365

    Article  Google Scholar 

  29. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B et al (2012) MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26:778–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107:3847–3853

    Article  CAS  PubMed  Google Scholar 

  31. Bos JL, Verlaan-de Vries M, van der Eb AJ, Janssen JW, Delwel R, Lowenberg B et al (1987) Mutations in N-ras predominate in acute myeloid leukemia. Blood 69:1237–1241

    CAS  PubMed  Google Scholar 

  32. Coghlan DW, Morley AA, Matthews JP, Bishop JF (1994) The incidence and prognostic significance of mutation in codon 13 of the N-ras gene in acute myeloid leukemia. Leukemia 8(10):1682–1687

    CAS  PubMed  Google Scholar 

  33. Neubauer A, Dodge R, George SL, Davey FR, Silver R, Schiffer CA et al (1994) Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood 83:1603–1611

    CAS  PubMed  Google Scholar 

  34. Radich JP, Kopecky KJ, Willman CL, Weick J, Head D, Appelbaum F et al (1990) N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 76:801–807

    CAS  PubMed  Google Scholar 

  35. Kadia TM, Kantarjian H, Kornblau S, Borthakur G, Faderl S, Freireich EJ et al (2012) Clinical and proteomic characterization of acute myeloid leukemia with mutated RAS. Cancer 118:5550–5559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center (BZC) and by grants from the National Institutes of Health grants (P01 CA55164 and P30 CA016672) and the Paul and Mary Haas Chair in Genetics (MA). We thank Deanna A. Alexander for assisting with manuscript preparation, Kathryn L. Hale and Numsen Hail, Jr. for editing the manuscript, and Anitha G. Somanchi for helping with data analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Andreeff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, P.Y., Mak, D.H., Mu, H. et al. Apoptosis repressor with caspase recruitment domain is regulated by MAPK/PI3K and confers drug resistance and survival advantage to AML. Apoptosis 19, 698–707 (2014). https://doi.org/10.1007/s10495-013-0954-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0954-z

Keywords

Navigation