Skip to main content

Advertisement

Log in

Mechanisms of apoptosis in irradiated and sunitinib-treated follicular thyroid cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The multikinase inhibitor sunitinib (S) seems to have promising potential in the treatment of thyroid cancer. We focused on the impact of S and/or irradiation (R) on mechanisms of apoptosis in follicular thyroid cancer cells. The effects of R, S and their combination were evaluated 2 and 4 days after treatment, using the human thyroid cancer cell line CGTH W-1. The transcription of genes involved in the regulation of apoptosis was investigated using quantitative real-time PCR. Western blot analyses of caspases and survivin were also performed. S elevated BAX (day 4), CASP9, CASP3, BIRC5 (day 4) and PRKACA (day 4) gene expression, whereas the mRNAs of BCL2, CASP8, PRKCA, ERK1, and ERK2 were not significantly changed. S, R and R+S clearly induced caspase-9 protein and elevated caspase-3 activity. Survivin was down-regulated at day 4 in control cells and the expression was blunted by S treatment. R+S induced survivin expression at day 2 followed by a reduction at day 4 of treatment. Sunitinib and the combined application with radiation induced apoptosis in follicular thyroid cancer cells via the intrinsic pathway of apoptosis. In addition, sunitinib might induce apoptosis via decreased expression of the anti-apoptotic protein survivin. These findings suggest the potential use of sunitinib for the treatment of poorly differentiated follicular thyroid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAX:

Bcl-2-associated X protein

DTC:

Differentiated thyroid cancer

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

FLT3:

Fetal liver tyrosine kinase

FTC:

Follicular thyroid cancer

MTC:

Medullary thyroid carcinoma

PARP:

Polyadenosine diphosphate ribose polymerase

PDGFR:

Platelet-derived growth factor receptor

PKA:

Protein kinase A

PKC:

Protein kinase C

PTC:

Papillary thyroid cancer

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TKI:

Tyrosine kinase inhibitor

TNF-R:

Tumor necrosis factor receptor

TSH:

Thyroid-stimulating hormone, also known as thyrotropin

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  2. Kossmehl P, Kurth E, Faramarzi S, Habighorst B, Shakibaei M, Wehland M, Kreutz R, Infanger M, J Danser AH, Grosse J, Paul M, Grimm D (2006) Mechanisms of apoptosis after ischemia and reperfusion: role of the renin-angiotensin system. Apoptosis 11:347–358

    Article  CAS  PubMed  Google Scholar 

  3. Schoenberger J, Bauer J, Moosbauer J, Eilles C, Grimm D (2008) Innovative strategies in in vivo apoptosis imaging. Curr Med Chem 15:187–194

    Article  CAS  PubMed  Google Scholar 

  4. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  7. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243

    Article  CAS  PubMed  Google Scholar 

  8. Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756

    Article  CAS  PubMed  Google Scholar 

  9. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Lenardo MJ (1997) Molecules involved in cell death and peripheral tolerance. Curr Opin Immunol 9:818–825

    Article  CAS  PubMed  Google Scholar 

  11. Mooney LM, Al-Sakkaf KA, Brown BL, Dobson PR (2002) Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br J Cancer 87:909–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A (1996) Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med 183:1957–1964

    Article  CAS  PubMed  Google Scholar 

  13. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707

    Article  CAS  PubMed  Google Scholar 

  14. Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306

    Article  CAS  PubMed  Google Scholar 

  15. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    Article  CAS  PubMed  Google Scholar 

  16. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T, Tanaka K, Tenjo T, Tanigawa N (2001) Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer 91:2026–2032

    Article  CAS  PubMed  Google Scholar 

  18. Ettl T, Stiegler C, Zeitler K, Agaimy A, Zenk J, Reichert TE, Gosau M, Kühnel T, Brockhoff G, Schwarz S (2012) EGFR, HER2, survivin, and loss of pSTAT3 characterize high-grade malignancy in salivary gland cancer with impact on prognosis. Hum Pathol 43:921–931

    Article  CAS  PubMed  Google Scholar 

  19. Fukuda S, Pelus LM (2006) Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5:1087–1098

    Article  CAS  PubMed  Google Scholar 

  20. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58:5315–5320

    CAS  PubMed  Google Scholar 

  21. Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH (2001) An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochem 40:1117–1123

    Article  CAS  Google Scholar 

  22. Liu T, Brouha B, Grossman D (2004) Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene 23:39–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54

    Article  CAS  PubMed  Google Scholar 

  24. Andersen MH, Thor SP (2002) Survivin—a universal tumor antigen. Histol Histopathol 17:669–675

    CAS  PubMed  Google Scholar 

  25. Ambrosini G, Adida C, Sirugo G, Altieri DC (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273:11177–11182

    Article  CAS  PubMed  Google Scholar 

  26. Sausville EA (2002) Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol Med 8:S32–S37

    Article  CAS  PubMed  Google Scholar 

  27. Zaffaroni N, Pennati M, Colella G, Perego P, Supino R, Gatti L, Pilotti S, Zunino F, Daidone MG (2002) Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci 59:1406–1412

    Article  CAS  PubMed  Google Scholar 

  28. Rödel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T, Sauer R, Rödel C (2005) Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 65:4881–4887

    Article  PubMed  Google Scholar 

  29. Agate L, Lorusso L, Elisei R (2012) New and old knowledge on differentiated thyroid cancer epidemiology and risk factors. J Endocrinol Invest 35:3–9

    CAS  PubMed  Google Scholar 

  30. Nix P, Nicolaides A, Coatesworth AP (2005) Thyroid cancer review 2: management of differentiated thyroid cancers. Int J Clin Pract 59:1459–1463

    Article  CAS  PubMed  Google Scholar 

  31. Eustatia-Rutten CF, Corssmit EP, Biermasz NR, Pereira AM, Romijn JA, Smit JW (2006) Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab 91:313–319

    Article  CAS  PubMed  Google Scholar 

  32. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, Caillou B, Ricard M, Lumbroso JD, De Vathaire F, Schlumberger M (2006) Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 91:2892–2899

    Article  CAS  PubMed  Google Scholar 

  33. Baudin E, Schlumberger M (2007) New therapeutic approaches for metastatic thyroid carcinoma. Lancet Oncol 8:148–156

    Article  CAS  PubMed  Google Scholar 

  34. SUTENT Summary of Product Characteristics (2012) Pfizer Limited, Kent, UK. http://www.medicines.org.uk/emc/medicine/18531/spc. Accessed 2 Oct 2013

  35. Patyna S, Laird AD, Mendel DB, O’farrell AM, Liang C, Guan H, Vojkovsky T, Vasile S, Wang X, Chen J, Grazzini M, Yang CY, Haznedar JO, Sukbuntherng J, Zhong WZ, Cherrington JM, Hu-Lowe D (2006) SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol Cancer Ther 5:1774–1782

    Article  CAS  PubMed  Google Scholar 

  36. Chow LQ, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25:884–896

    Article  CAS  PubMed  Google Scholar 

  37. Willhauck MJ, Schott M, Kreissl MC, Fassnacht M, Spitzweg C (2011) Neue Therapieoptionen bei fortgeschrittenen Schilddrüsenkarzinomen. Dtsch Med Wochenschr 136:1165–1168

    Article  CAS  PubMed  Google Scholar 

  38. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, Bauman JE, Martins RG (2010) Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 16:5260–5268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D, McMahon G, Hallahan DE (2003) SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 63:4009–4016

    CAS  PubMed  Google Scholar 

  40. Grosse J, Warnke E, Pohl F, Magnusson NE, Wehland M, Infanger M, Eilles C, Grimm D (2013) Impact of sunitinib on human thyroid cancer cells. Cell Physiol Biochem 32:154–170

    Article  CAS  PubMed  Google Scholar 

  41. Lin JD, Chao TC, Weng HF, Huang HS, Ho YS (1996) Establishment of xenografts and cell lines from well-differentiated human thyroid carcinoma. J Surg Oncol 63:112–118

    Article  CAS  PubMed  Google Scholar 

  42. Piscazzi A, Costantino E, Maddalena F, Natalicchio MI, Gerardi AM, Antonetti R, Cignarelli M, Landriscina M (2012) Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. J Clin Endocrinol Metab 97:E898–E906

    Article  CAS  PubMed  Google Scholar 

  43. Pohl F, Hassel S, Nohe A, Flentje M, Knaus P, Sebald W, Koelbl O (2003) Radiation-induced suppression of the Bmp2 signal transduction pathway in the pluripotent mesenchymal cell line C2C12: an in vitro model for prevention of heterotopic ossification by radiotherapy. Radiat Res 159:345–350

    Article  CAS  PubMed  Google Scholar 

  44. Pohl F, Grosse J, Grimm D, Brockhoff G, Westphal K, Moosbauer J, Koelbl O, Infanger M, Eilles C, Schoenberger J (2010) Changes of apoptosis, p53, and bcl-2 by irradiation in poorly differentiated thyroid carcinoma cell lines: a prognostic marker for the prospect of therapeutic success? Thyroid 20:159–166

    Article  CAS  PubMed  Google Scholar 

  45. Grosse J, Grimm D, Westphal K, Ulbrich C, Moosbauer J, Pohl F, Koelbl O, Infanger M, Eilles C, Schoenberger J (2009) Radiolabeled annexin V for imaging apoptosis in radiated human follicular thyroid carcinomas—is an individualized protocol necessary? Nucl Med Biol 36:89–98

    Article  CAS  PubMed  Google Scholar 

  46. Tseng LM, Huang PI, Chen YR, Chen YC, Chou YC, Chen YW, Chang YL, Hsu HS, Lan YT, Chen KH, Chi CW, Chiou SH, Yang DM, Lee CH (2012) Targeting signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+cells. J Pharmacol Exp Ther 341:410–423

    Article  CAS  PubMed  Google Scholar 

  47. Infanger M, Faramarzi S, Grosse J, Kurth E, Ulbrich C, Bauer J, Wehland M, Kreutz R, Kossmehl P, Paul M, Grimm D (2007) Expression of vascular endothelial growth factor and receptor tyrosine kinases in cardiac ischemia/reperfusion injury. Cardiovasc Pathol 16:291–299

    Article  CAS  PubMed  Google Scholar 

  48. Magnusson NE, Dyrskjot L, Grimm D, Wehland M, Pietsch J, Rungby J (2012) Gene networks modified by sulphonylureas in beta cells: a pathway-based analysis of insulin secretion and cell death. Basic Clin Pharmacol Toxicol 111:254–261

    CAS  PubMed  Google Scholar 

  49. Ma X, Wehland M, Aleshcheva G, Hauslage J, Waßer K, Hemmersbach R, Infanger M, Bauer J, Grimm D (2013) Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS One 8:e68140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Grosse J, Wehland M, Pietsch J, Schulz H, Saar K, Hübner N, Eilles C, Bauer J, Abou-El-Ardat K, Baatout S, Ma X, Infanger M, Hemmersbach R, Grimm D (2012) Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 26:5124–5140

    Article  CAS  PubMed  Google Scholar 

  51. Grosse J, Wehland M, Pietsch J, Ma X, Ulbrich C, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R, Braun M, van Loon J, Vagt N, Infanger M, Eilles C, Egli M, Richter P, Baltz T, Einspanier R, Sharbati S, Grimm D (2012) Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 26:639–655

    Article  CAS  PubMed  Google Scholar 

  52. Wehland M, Ma X, Braun M, Hauslage J, Hemmersbach R, Bauer J, Grosse J, Infanger M, Grimm D (2013) The impact of altered gravity and vibration on endothelial cells during a parabolic flight. Cell Physiol Biochem 31:432–451

    Article  CAS  PubMed  Google Scholar 

  53. Grimm D, Bauer J, Schoenberger J (2009) Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr Vasc Pharmacol 7:347–357

    Article  CAS  PubMed  Google Scholar 

  54. Wehland M, Bauer J, Infanger M, Grimm D (2012) Target-based anti-angiogenic therapy in breast cancer. Curr Pharm Des 18:4244–4257

    Article  CAS  PubMed  Google Scholar 

  55. Pasqualetti G, Ricci S, Boni G, Tognini S, Polini A, Mariani G, Ferdeghini M, Monzani F (2012) Off-label use of sunitinib in patients with advanced, epithelial thyroid cancer: a retrospective analysis. Recent Pat Endocr Metab Immune Drug Discov 6:171–176

    Article  CAS  PubMed  Google Scholar 

  56. Grimm D, Wehland M, Pietsch J, Infanger M, Bauer J (2011) Drugs interfering with apoptosis in breast cancer. Curr Pharm Des 17:272–283

    Article  CAS  PubMed  Google Scholar 

  57. Kossmehl P, Shakibaei M, Cogoli A, Infanger M, Curcio F, Schönberger J, Eilles C, Bauer J, Pickenhahn H, Schulze-Tanzil G, Paul M, Grimm D (2003) Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 144:4172–4179

    Article  CAS  PubMed  Google Scholar 

  58. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  CAS  PubMed  Google Scholar 

  59. Yang F, Jove V, Xin H, Hedvat M, Van Meter TE, Yu H (2010) Sunitinib induces apoptosis and growth arrest of medulloblastoma tumor cells by inhibiting STAT3 and AKT signaling pathways. Mol Cancer Res 8:35–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sonpavde G, Jian W, Liu H, Wu MF, Shen SS, Lerner SP (2009) Sunitinib malate is active against human urothelial carcinoma and enhances the activity of cisplatin in a preclinical model. Urol Oncol 27:391–399

    Article  CAS  PubMed  Google Scholar 

  61. Prevostel C, Alvaro V, Boisvilliers F, Martin A, Jaffol C, Joubert D (1995) The natural protein kinase C α mutant is present in human thyroid neoplasms. Oncogene 11:669–674

    CAS  PubMed  Google Scholar 

  62. Wetsel WC, Khan WA, Merchenthaler I, Rivera H, Halpern AE, Phung HM, Negro-Vilar A, Hannun YA (1992) Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol 117:121–133

    Article  CAS  PubMed  Google Scholar 

  63. Yin Z, Pringle DR, Jones GN, Kelly KM, Kirschner LS (2011) Differential role of PKA catalytic subunits in mediating phenotypes caused by knockout of the Carney complex gene Prkar1a. Mol Endocrinol 25:1786–1793

    Article  CAS  PubMed  Google Scholar 

  64. Howie HL, Shiflett SL, So M (2008) Extracellular signal-regulated kinase activation by Neisseria gonorrhoeae downregulates epithelial cell proapoptotic proteins Bad and Bim. Infect Immun 76:2715–2721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Fenton MS, Marion KM, Salem AK, Hogen R, Naeim F, Hershman JM (2010) Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid 20:965–974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Henriette Dam for her excellent technical assistance. The data presented in this publication are part of the Master’s degree thesis of Elisabeth Warnke prepared during the postgraduate educational program at the Charité-Universitätsmedizin Berlin. We would also like to thank the team at PRS and EJE, Letchworth Garden City, Hertfordshire, UK, for academic proofreading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosse, J., Warnke, E., Wehland, M. et al. Mechanisms of apoptosis in irradiated and sunitinib-treated follicular thyroid cancer cells. Apoptosis 19, 480–490 (2014). https://doi.org/10.1007/s10495-013-0937-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0937-0

Keywords

Navigation