Skip to main content
Log in

Role of p53 in cAMP/PKA pathway mediated apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Deregulated β-adrenoceptor/cAMP-PKA pathway is implicated in a range of human diseases, such as neuronal loss during aging, cardiomyopathy and septic shock. The molecular mechanism of this process is, however, only poorly understood. We recently had demonstrated that the β-adrenoceptor/cAMP-PKA pathway triggers apoptosis through the transcriptional induction of the pro-apoptotic BH3-only Bcl-2 family member BIM in tissues, such as the thymus and the heart. Induction of BIM is driven by the transcriptional co-activator CBP (CREB Binding Protein) together with the proto-oncogene c-Myc. Association of CBP with c-Myc leads to altered histone acetylation and methylation pattern at the BIM promoter site [Lee et al., Cell Death Difference 20(7):941–952 (2013)]. However since CBP is a co-factor for multiple transcription factors, BH-3 only proteins other than Bim could also contribute to this apoptosis pathway. Here we provide evidence for the involvement of p53-CBP axis in apoptosis through Puma/Noxa induction, in response to β-adrenoceptor activation. Our findings highlight the molecular complexity of pathophysiology associated with a deregulated neuro-endocrine system and for developing novel therapeutic strategies for these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pastan I, Perlman R (1970) Cyclic adenosine monophosphate in bacteria. Science 169:339–344

    Article  PubMed  CAS  Google Scholar 

  2. Liang W, Pascual-Montano A, Silva AJ, Benitez JA (2007) The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. Microbiology 153:2964–2975

    Article  PubMed  CAS  Google Scholar 

  3. Konijn TM, Chang YY, Bonner JT (1969) Synthesis of cyclic AMP in dictyostelium discoideum and polysphondylium pallidum. Nature 224:1211–1212

    Article  PubMed  CAS  Google Scholar 

  4. Sutherland EW (1970) On the biological role of cyclic AMP. JAMA 214:1281–1288

    Article  PubMed  Google Scholar 

  5. Tomkins GM (1975) The metabolic code. Science 189:760–763

    Article  PubMed  CAS  Google Scholar 

  6. Pratt RM, Martin GR (1975) Epithelial cell death and cyclic AMP increase during palatal development. Proc Natl Acad Sci USA 72:874–877

    Article  PubMed  CAS  Google Scholar 

  7. Antos CL, Frey N, Marx SO et al (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ Res 89:997–1004

    Article  PubMed  CAS  Google Scholar 

  8. Flierl MA, Rittirsch D, Nadeau BA et al (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725

    Article  PubMed  CAS  Google Scholar 

  9. Seals DR, Dinenno FA (2004) Collateral damage: cardiovascular consequences of chronic sympathetic activation with human aging. Am J Physiol Heart Circ Physiol 287:1895–1905

    Article  Google Scholar 

  10. Singh K, Communal C, Sawyer DB, Colucci WS (2000) Adrenergic regulation of myocardial apoptosis. Cardiovasc Res 45:713–719

    Article  PubMed  CAS  Google Scholar 

  11. Stavrakis S, Yu X, Patterson E et al (2009) Activating autoantibodies to the beta-1 adrenergic and m2 muscarinic receptors facilitate atrial fibrillation in patients with Graves’ hyperthyroidism. J Am Coll Cardiol 54(14):1309–1316

    Article  PubMed  CAS  Google Scholar 

  12. Xiao RP, (2001) Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE (104): re15

  13. Santambrogio L, Lipartiti M, Bruni A, Dal Toso R (1993) Dopamine receptors on human T- and B-lymphocytes. J Neuroimmunol 45:113–119

    Article  PubMed  CAS  Google Scholar 

  14. Annane D, Bellissant E, Cavaillon J-M (2005) Septic shock. Lancet 365:63–78

    Article  PubMed  CAS  Google Scholar 

  15. Oberbeck R, Schmitz D, Wilsenack K et al (2004) Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation 11:214–223

    Article  PubMed  CAS  Google Scholar 

  16. Shinkai T, Zhang L, Mathias SA, Roth GS (1997) Dopamine induces apoptosis in cultured rat striatal neurons; possible mechanism of D2-dopamine receptor neuron loss during aging. J Neurosci Res 47:393–399

    Article  PubMed  CAS  Google Scholar 

  17. Padgett DA, Glaser R (2003) How stress influences the immune response. Trends Immunol 24:444–448

    Article  PubMed  CAS  Google Scholar 

  18. Bouillet P, Metcalf D, Huang DC et al (1999) Proapoptotic Bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286:1735–1738

    Article  PubMed  CAS  Google Scholar 

  19. Puthalakath H, O’Reilly LA, Gunn P et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  PubMed  CAS  Google Scholar 

  20. Bouillet P, Purton JF, Godfrey DI et al (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926

    Article  PubMed  CAS  Google Scholar 

  21. Enders ABP, Puthalakath H, Xu Y, Tarlinton DM, Strasser A (2003) Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells. J Exp Med 198:1119–1126

    Article  PubMed  CAS  Google Scholar 

  22. Moujalled D, Weston R, Anderton H et al (2011) Cyclic-AMP-dependent protein kinase A regulates apoptosis by stabilizing the BH3-only protein Bim. EMBO Rep 12:77–83

    Article  PubMed  CAS  Google Scholar 

  23. Zhang LIP (2004) The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells. J Biol Chem 279:20858–20865

    Article  PubMed  CAS  Google Scholar 

  24. Zambon AC, Wilderman A, Ho A, Insel PA (2011) Increased expression of the Pro-apoptotic protein BIM: A mechanism for cAMP/PKA-induced apoptosis of immature T cells. J Biol Chem 286:33260–33267

    Article  PubMed  CAS  Google Scholar 

  25. Lee YY, Moujallad DM, Doerflinger M et al (2013) CREB binding protein (CBP) regulates β-adrenoceptor (β-AR)-mediated apoptosis. Cell Death Differ 20(7):941–952

    Article  PubMed  CAS  Google Scholar 

  26. Gangoda L, Doerflinger M, Lee YY et al (2012) Cre transgene results in global attenuation of the cAMP/PKA pathway. Cell Death Dis 3:e365

    Article  PubMed  CAS  Google Scholar 

  27. Anderson M, Moore D, Larson D (2008) Comparison of isoproterenol and dobutamine in the induction of cardiac hypertrophy and fibrosis. Perfusion 23:231–235

    Article  PubMed  CAS  Google Scholar 

  28. Maruoka H, Sasaya H, Shimamura Y, Nakatani Y, Shimoke K, Ikeuchi T (2010) Dibutyryl-cAMP up-regulates nur77 expression via histone modification during neurite outgrowth in PC12 cells. J Biochem 148:93–101

    Article  PubMed  CAS  Google Scholar 

  29. Hara MR, Kovacs JJ, Whalen EJ et al (2011) A stress response pathway regulates DNA damage through beta(2)-adrenoreceptors and beta-arrestin-1. Nature 477(7364):349–353

    Article  PubMed  CAS  Google Scholar 

  30. Jabbour AM, Daunt CP, Green BD et al (2010) Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood 115:344–352

    Article  PubMed  CAS  Google Scholar 

  31. Pasqualucci L, Dominguez-Sola D, Chiarenza A et al (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471:189–195

    Article  PubMed  CAS  Google Scholar 

  32. Wang F, Marshall CB, Yamamoto K et al (2012) Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. P Natl Acad Sci USA 109:6078–6083

    Article  CAS  Google Scholar 

  33. Kishimoto M, Kohno T, Okudela K et al (2005) Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res 11:512–519

    PubMed  CAS  Google Scholar 

  34. Li JLB, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7260–7270

    Article  PubMed  CAS  Google Scholar 

  35. Michalak EM, Vandenberg CJ, Delbridge AR et al (2010) Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev 24:1608–1613

    Article  PubMed  CAS  Google Scholar 

  36. Giebler HA, Lemasson I, Nyborg JK (2000) p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol Cell Biol 20:4849–4858

    Article  PubMed  CAS  Google Scholar 

  37. Pasqualucci L, Dominguez-Sola D, Chiarenza A et al (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471:189–195

    Article  PubMed  CAS  Google Scholar 

  38. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. P Natl Acad Sci USA 107:19290–19295

    Article  CAS  Google Scholar 

  39. Agustsson T, Ryden M, Hoffstedt J et al (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67:5531–5537

    Article  PubMed  CAS  Google Scholar 

  40. Schwarzkopf M, Coletti D, Sassoon D, Marazzi G (2006) Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev 20:3440–3452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andreas Strasser and Anissa Jabbour for reagents and advice. HP is supported by ARC Future Fellowship (FT0990683) and by ARC project Grant (DP110100417).

Conflict of interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamsa Puthalakath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, A., Lee, Y.Y., Abdella, H. et al. Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis 18, 1492–1499 (2013). https://doi.org/10.1007/s10495-013-0895-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0895-6

Keywords

Navigation