Skip to main content
Log in

FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

PP2A activator FTY720 has been shown to possess the anti-leukemic activity for chronic myelogenous leukemia (CML), however, the cell killing mechanism underlying its anti-leukemic activity has remained to be verified. We investigated the precise mechanisms underlying the apoptosis induction by FTY720, especially focusing on the roles of BH3-only proteins, and the therapeutic potency of FTY720 for CML. Enforced expression of either BCL2 or the dominant-negative protein of FADD (FADD.DN) partly protected CML cells from apoptosis by FTY720, indicating the involvement of both cell extrinsic and intrinsic apoptosis pathways. FTY720 activates pro-apoptotic BH3-only proteins: BIM, which is essential for apoptosis by BCR-ABL1 tyrosine kinase inhibitors (TKIs), and BID, which accelerates the extrinsic apoptosis pathway. Gene knockdown of either BIM or BID partly protected K562 cells from apoptosis by FTY720, but the extent of cell protection was not as much as that by overexpression of either BCL2 or FADD.DN. Moreover, knockdown of both BIM and BID did not provide additional protection compared with knockdown of only BIM or BID, indicating that BIM and BID complement each other in apoptosis by FTY720, especially when either is functionally impaired. FTY720 can overcome TKI resistance caused by ABL kinase domain mutations, dysfunction of BIM resulting from gene deletion polymorphism, and galectin-3 overexpression. In addition, ABT-263, a BH3-mimetic, significantly augmented cell death induction by FTY720 both in TKI-sensitive and -resistant leukemic cells. These results provide the rationale that FTY720, with its unique effects on BIM and BID, could lead to new therapeutic strategies for CML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  PubMed  Google Scholar 

  2. Kantarjian H, Shah NP, Hochhaus A et al (2010) Dasatinib versus imatinib in newly diagnosed chronicphase chronic myeloid leukemia. N Engl J Med 362:2260–2270

    Article  CAS  PubMed  Google Scholar 

  3. Saglio G, Kim DW, Issaragrisil S et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259

    Article  CAS  PubMed  Google Scholar 

  4. Kuroda J, Shimura Y, Yamamoto-Sugitani M, Sasaki N, Taniwaki M (2013) Multifaceted mechanisms for cell survival and drug targeting in chronic myelogenous leukemia. Curr Cancer Drug Targ 13:69–79

    Article  CAS  Google Scholar 

  5. Kuroda J, Puthalakath H, Cragg MS et al (2006) Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 103:14907–14912

    Article  CAS  PubMed  Google Scholar 

  6. Kuroda J, Kimura S, Strasser A et al (2007) Apoptosis-based dual molecular targeting by INNO-406, a second-generation Bcr-Abl inhibitor, and ABT-737, an inhibitor of antiapoptotic Bcl-2 proteins, against Bcr-Abl-positive leukemia. Cell Death Differ 14:1667–1677

    Article  CAS  PubMed  Google Scholar 

  7. Skaggs BJ, Gorre ME, Ryvkin A et al (2006) Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants. Proc Natl Acad Sci USA 103:19466–19471

    Article  CAS  PubMed  Google Scholar 

  8. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto-Sugitani M, Kuroda J, Ashihara E et al (2011) Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci USA 108:17468–17473

    Article  CAS  PubMed  Google Scholar 

  10. Kamitsuji Y, Kuroda J, Kimura S et al (2008) The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias. Cell Death Differ 15:1712–1722

    Article  CAS  PubMed  Google Scholar 

  11. Bellodi C, Lidonnici MR, Hamilton A et al (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119:1109–1123

    Article  CAS  PubMed  Google Scholar 

  12. Crowley LC, Elzinga BM, O’Sullivan GC, McKenna SL (2011) Autophagy induction by Bcr-Abl-expressing cells facilitates their recovery from a targeted or nontargeted treatment. Am J Hematol 86:38–47

    Article  CAS  PubMed  Google Scholar 

  13. Jørgensen HG, Holyoake TL (2007) Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans 35:1347–1351

    Article  PubMed  Google Scholar 

  14. Jamieson CH, Ailles LE, Dylla SJ et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  CAS  PubMed  Google Scholar 

  15. Lemoli RM, Salvestrini V, Bianchi E et al (2009) Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib. Blood 114:5191–5200

    Article  CAS  PubMed  Google Scholar 

  16. Copland M, Hamilton A, Elrick LJ et al (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107:4532–4539

    Article  CAS  PubMed  Google Scholar 

  17. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121:396–409

    Article  CAS  PubMed  Google Scholar 

  18. Takeuchi M, Kimura S, Kuroda J et al (2010) Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment. Cell Death Differ 17:1211–1220

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt T, Kharabi Masouleh B, Loges S et al (2011) Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell 19:740–753

    Article  CAS  PubMed  Google Scholar 

  20. Damiano JS, Hazlehurst LA, Dalton WS (2001) Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia 15:1232–1239

    Article  CAS  PubMed  Google Scholar 

  21. Jin L, Tabe Y, Konoplev S et al (2008) CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 7:48–58

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Cai D, Brendel C et al (2007) Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 109:2147–2155

    Article  CAS  PubMed  Google Scholar 

  23. Ng KP, Hillmer AM, Chuah CT et al (2012) A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 18:521–528

    Article  CAS  PubMed  Google Scholar 

  24. Lucas CM, Harris RJ, Giannoudis A, Copland M, Slupsky JR, Clark RE (2011) Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood 117:6660–6668

    Article  CAS  PubMed  Google Scholar 

  25. Mahon FX, Réa D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop imatinib (STIM) trial. Lancet Oncol 11:1029–1035

    Article  CAS  PubMed  Google Scholar 

  26. Ross DM, Branford S, Seymour JF et al (2010) Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 24:1719–1724

    Article  CAS  PubMed  Google Scholar 

  27. Stamatović D, Balint B, Tukić L et al (2012) Allogeneic stem cell transplant for chronic myeloid leukemia as a still promising option in the era of the new target therapy. Vojnosanit Pregl 69:37–42

    Article  PubMed  Google Scholar 

  28. Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439

    Article  CAS  PubMed  Google Scholar 

  29. Janssens V, Goris J, Van Hoof C (2005) PP2A: the expected tumor suppressor. Curr Opin Genet Dev 15:34–41

    Article  CAS  PubMed  Google Scholar 

  30. Azuma H, Takahara S, Ichimaru N et al (2002) Marked Prevention of Tumor Growth and Metastasis by a Novel Immunosuppressive Agent, FTY720, in Mouse Breast Cancer Models. Cancer Res 62:1410–1419

    CAS  PubMed  Google Scholar 

  31. Calin GA, di Iasio MG, Caprini E et al (2000) Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19:1191–1195

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki K, Takahashi K (2003) Reduced expression of the regulatory A subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. Int J Oncol 23:1263–1268

    CAS  PubMed  Google Scholar 

  33. Takagi Y, Futamura M, Yamaguchi K, Aoki S, Takahashi T, Saji S (2000) Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut 47:268–271

    Article  CAS  PubMed  Google Scholar 

  34. Neviani P, Santhanam R, Trotta R et al (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368

    Article  CAS  PubMed  Google Scholar 

  35. Kappos L, Antel J, Comi G et al (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140

    Article  CAS  PubMed  Google Scholar 

  36. Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415

    Article  CAS  PubMed  Google Scholar 

  37. Devonshire V, Havrdova E, Radue EW et al (2012) Relapse and disability outcomes in patients with multiple sclerosis treated with fingolimod: subgroup analyses of the double-blind, randomised, placebo-controlled FREEDOMS study. Lancet Neurol 11:420–428

    Article  CAS  PubMed  Google Scholar 

  38. Brinkmann V, Davis MD, Heise CE et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    Article  CAS  PubMed  Google Scholar 

  39. Mandala S, Hajdu R, Bergstrom J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    Article  CAS  PubMed  Google Scholar 

  40. Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  CAS  PubMed  Google Scholar 

  41. Neviani P, Santhanam R, Oaks JJ et al (2007) FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 117:2408–2421

    Article  CAS  PubMed  Google Scholar 

  42. Liao A, Broeg K, Fox T et al (2011) Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 118:2793–2800

    Article  CAS  PubMed  Google Scholar 

  43. Liu Q, Zhao X, Frissora F et al (2008) FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 111:275–284

    Article  CAS  PubMed  Google Scholar 

  44. Liu Q, Alinari L, Chen CS et al (2010) FTY720 shows promising in vitro and in vivo preclinical activity by downmodulating Cyclin D1 and phospho-Akt in mantle cell lymphoma. Clin Cancer Res 16:3182–3192

    Article  CAS  PubMed  Google Scholar 

  45. Roberts KG, Smith AM, McDougall F et al (2010) Essential requirement for PP2A inhibition by the oncogenic receptor c-KIT suggests PP2A reactivation as a strategy to treat c-KIT+ cancers. Cancer Res 70:5438–5447

    Article  CAS  PubMed  Google Scholar 

  46. Shinomiya T, Li XK, Amemiya H, Suzuki S (1997) An immunosuppressive agent, FTY720, increases intracellular concentration of calcium ion and induces apoptosis in HL-60. Immunology 91:594–600

    Article  CAS  PubMed  Google Scholar 

  47. Permpongkosol S, Wang JD, Takahara S et al (2002) Anticarcinogenic effect of FTY720 in human prostate carcinoma DU145 cells: modulation of mitogenic signaling, FAK, cell-cycle entry and apoptosis. Int J Cancer 98:167–172

    Article  CAS  PubMed  Google Scholar 

  48. Brinkmann V, Wilt C, Kristofic C et al (2001) FTY720: dissection of membrane receptor-operated, stereospecific effects on cell migration from receptor-independent antiproliferative and apoptotic effects. Transplant Proc 33:3078–3080

    Article  CAS  PubMed  Google Scholar 

  49. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki E, Handa K, Toledo MS, Hakomori S (2004) Sphingosine-dependent apoptosis: a unified concept based on multiple mechanisms operating in concert. Proc Natl Acad Sci USA 101:14788–14793

    Article  CAS  PubMed  Google Scholar 

  51. Shimura Y, Kuroda J, Ri M et al (2012) RSK2Ser227 at N-terminal kinase domain is a potential therapeutic target for multiple myeloma. Mol Cancer Ther 11:2600–2609

    Article  CAS  PubMed  Google Scholar 

  52. Ricci C, Scappini B, Divoky V et al (2002) Mutation in the ATP-binding pocket of the ABL kinase domain in an STI571-resistant BCR/ABL-positive cell line. Cancer Res 62:5995–5998

    CAS  PubMed  Google Scholar 

  53. Kuroda J, Taniwaki M (2009) Involvement of BH3-only proteins in hematologic malignancies. Crit Rev Oncol Hematol 71:89–101

    Article  PubMed  Google Scholar 

  54. Kuwana T, Bouchier-Hayes L, Chipuk JE et al (2005) BH3 domeins of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  CAS  PubMed  Google Scholar 

  55. Willis SN, Fletcher JI, Kaufmann T et al (2007) Apopotosis initiated when BH3 ligands engage multiple Bcl-2 homologys, not Bax or Bak. Science 315:856–859

    Article  CAS  PubMed  Google Scholar 

  56. Kuroda J, Kimura S, Andreeff M et al (2008) ABT-737 is a useful component of combinatory chemotherapies for chronic myeloid leukaemias with diverse drug-resistance mechanisms. Br J Haematol 140:181–190

    CAS  PubMed  Google Scholar 

  57. Burke BA, Carroll M (2010) BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 24:1105–1112

    Article  CAS  PubMed  Google Scholar 

  58. San José-Eneriz E, Agirre X, Jiménez-Velasco A et al (2009) Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. Eur J Cancer 45:1877–1889

    Article  PubMed  Google Scholar 

  59. Kuroda J, Yamamoto M, Nagoshi H et al (2010) Targeting activating transcription factor 3 by Galectin-9 induces apoptosis and overcomes various types of treatment resistance in chronic myelogenous leukemia. Mol Cancer Res 8:994–1001

    Article  CAS  PubMed  Google Scholar 

  60. Česen MH, Pegan K, Spes A, Turk B (2012) Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res 318:1245–1251

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Masafumi Taniwaki, Junya Kuroda and Mio Yamamoto-Sugitani), the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the KANAE Foundation for the Promotion of Medical Science, the Hoansha Foundation and the Award in Aki’s Memory from the International Myeloma Foundation (Junya Kuroda).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junya Kuroda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Effects of FTY720 on BAD, NOXA and PUMA. K562 cells were treated with either 7.5 M FTY720 or 0.5 M IM for the indicated periods. No clear activation or induction was observed in BAD, NOXA or PUMA by FTY720 treatment. Positive controls (P) of NOXA and PUMA are also shown with molecular marker (M) (TIF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyota, M., Kuroda, J., Yamamoto-Sugitani, M. et al. FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis 18, 1437–1446 (2013). https://doi.org/10.1007/s10495-013-0882-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0882-y

Keywords

Navigation