Skip to main content
Log in

Apoptosis in extracorporeal preserved inguinal fat flaps of the rat

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fat cells are fragile cells with a short life span outside the body. Ways to reduce cell death in a biochemical way are almost unknown due to scarce information on the type of cellular death that is induced in fat tissue. This study was designed to investigate the apoptotic pathways of fat tissue in a permanent perfusion bioreactor system with the Hannover preservation solution and the Eurocollins solution in fat flaps of rats. In Lewis rats, the inguinal adipofascial flaps were elevated bilaterally and placed in a bioreactor at 37°C. To detect caspases 3, 8, 9 and 12, immunofluorescence stains of fat tissue specimen were analysed at several time points after preservation of flaps were placed in Hannover solution and Eurocollins solution for 10 days. An additional visual assessment of viability by a calcein based life/dead test was performed. It revealed a superior viability of the adipose tissue preserved in Hannover solution. Immunofluorescence staining demonstrated that apoptotic pathways via mitochondria, endoplasmatic reticulum and death receptors were activated, as Caspases 8, 9 and 12 were detected. Caspase 3 as an effector in the common apoptotic pathway was detected as well. Adipose tissue preserved at 37°C ex vivo in a bioreactor system undergoes apoptosis. Immunofluorescence examination of the fat tissue preserved ex vivo revealed that apoptotic pathways via mitochondria, endoplasmatic reticulum and death receptors are being activated. Significantly less activation of Caspase 3, 8, 9 and 12 in flaps preserved in Hannover solution in comparison to Eurocollins was found, supporting the anti apoptotic characteristics of Hannover solution. Based on these findings, further research to modify the apoptotic pathways to ameliorate viability of fat tissue can be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herold C, Ueberreiter K, Cromme F, Busche MN, Vogt PM (2010) The use of mamma MRI volumetry to evaluate the rate of fat survival after autologous lipotransfer. Handchir Mikrochir Plast Chir 42:129–134

    Article  PubMed  CAS  Google Scholar 

  2. Ueberreiter K, von Finckenstein JG, Cromme F, Herold C, Tanzella U (2010) Vogt PM BEAULI™—eine neue methode zur einfachen und zuverlässigen Fettzell-transplantation. Handchir Mikrochir Plast Chir 42:379–385

    Article  PubMed  CAS  Google Scholar 

  3. Pu LL, Coleman SR, Cui X, Ferguson RE Jr, Vasconez HC (2008) Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 122:932–937

    Article  PubMed  CAS  Google Scholar 

  4. Ferguson RE, Cui X, Fink BF, Vasconez HC, Pu LL (2008) The viability of autologous fat grafts harvested with the LipiVage system: a comparative study. Ann Plast Surg 60:594–597

    Article  PubMed  CAS  Google Scholar 

  5. Witort EJ, Pattarino J, Papucci L, Schiavone N, Donnini M, Lapucci A et al (2007) Autologous lipofilling: coenzyme Q10 can rescue adipocytes from stress-induced apoptotic death. Plast Reconstr Surg 119:1191–1199

    Article  PubMed  CAS  Google Scholar 

  6. Nishimura T, Hashimoto H, Nakanishi I, Furukawa M (2000) Microvascular angiogenesis and apoptosis in the survival of free fat grafts. Laryngoscope 110:1333–1338

    Article  PubMed  CAS  Google Scholar 

  7. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K et al (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  8. Liu YJ, Mason DY, Johnson GD, Abbot S, Gregory CD, Hardie DL et al (1991) Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur J Immunol 21:1905–1910

    Article  PubMed  CAS  Google Scholar 

  9. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  10. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    Article  PubMed  CAS  Google Scholar 

  11. Wallach D, Boldin M, Goncharov T, Goltsev Y, Mett I, Malinin N et al (1996) Exploring cell death mechanisms by analyzing signaling cascades of the TNF/NGF receptor family. Behring Inst Mitt 97:144–155

    PubMed  CAS  Google Scholar 

  12. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  13. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  14. Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He WW et al (1996) ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J Biol Chem 271:16720–16724

    Article  PubMed  CAS  Google Scholar 

  15. Bando T, Albes JM, Nusse T, Wada H, Hitomi S, Wahlers T et al (1998) Comparison of euro-collins solution, low-potassium dextran solution containing glucose, and ET-kyoto solution for lung preservation in an extracorporeal rat lung perfusion model. Eur Surg Res 30:297–304

    Article  PubMed  CAS  Google Scholar 

  16. Herold C, Reimers K, Allmeling C, Rennekampff HO, Vogt PM (2009) A normothermic perfusion bioreactor to preserve viability of rat groin flaps extracorporally. Transplant Proc 41:4382–4388

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T et al (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3382

    Article  PubMed  CAS  Google Scholar 

  18. Smahel J (1989) Experimental implantation of adipose tissue fragments. Br J Plast Surg 42:207–211

    Article  PubMed  CAS  Google Scholar 

  19. Boyce RG, Nuss DW, Kluka EA (1994) The use of autogenous fat, fascia, and nonvascularized muscle grafts in the head and neck. Otolaryngol Clin North Am 27:39–68

    PubMed  CAS  Google Scholar 

  20. Nguyen A, Pasyk KA, Bouvier TN, Hassett CA, Argenta LC (1990) Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plast Reconstr Surg 85:378–386

    Article  PubMed  CAS  Google Scholar 

  21. Matsudo PK, Toledo LS (1988) Experience of injected fat grafting. Aesthet Plast Surg 12:35–38

    Article  CAS  Google Scholar 

  22. Alexander Del Vecchio D, Bucky LP (2011) Breast augmentation using pre-expansion and autologous fat transplantation—a clinical radiological study. Plast Reconstr Surg [Epub ahead of print]

  23. Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L, Roth KA et al (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11:797–803

    Article  PubMed  CAS  Google Scholar 

  24. Baran CN, Celebioglu S, Sensöz O, Ulusoy G, Civelek B, Ortak T (2002) The behavior of fat grafts in recipient areas with enhanced vascularity. Plast Reconstr Surg 109:1646–1651, 1652

    Google Scholar 

  25. Brucker M, Sati S, Spangenberger A, Weinzweig J (2008) Long-term fate of transplanted autologous fat in a novel rabbit facial model. Plast Reconstr Surg 122:749–754

    Article  PubMed  CAS  Google Scholar 

  26. Coban YK, Ciralik H (2007) The effects of increased ischemic times on adipose tissue: a histopathologic study using the epigastric flap model in rats. Aesthet Plast Surg 31:570–573

    Article  Google Scholar 

  27. McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S (2004) Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 286:H1923–H1935

    Article  PubMed  CAS  Google Scholar 

  28. Prins JB, Walker NI, Winterford CM, Cameron DP (1994) Apoptosis of human adipocytes in vitro. Biochem Biophys Res Commun 201:500–507

    Article  PubMed  CAS  Google Scholar 

  29. Qian H, Hausman DB, Compton MM, Martin RJ, Della-Fera MA, Hartzell DL et al (2001) TNF alpha induces and insulin inhibits caspase 3-dependent adipocyte apoptosis. Biochem Biophys Res Commun 284:1176–1183

    Article  PubMed  CAS  Google Scholar 

  30. Yuksel E, Weinfeld AB, Cleek R, Jensen J, Wamsley S, Waugh JM et al (2000) Augmentation of adipofascial flaps using the long-term local delivery of insulin and insulin-like growth factor-1. Plast Reconstr Surg 106:373–382

    Article  PubMed  CAS  Google Scholar 

  31. Yuksel E, Weinfeld AB, Cleek R, Wamsley S, Jensen J, Boutros S et al (2000) Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg 105:1712–1720

    Article  PubMed  CAS  Google Scholar 

  32. Zhang HH, Kumar S, Barnett AH, Eggo MC (2001) Dexamethasone inhibits tumor necrosis factor-alpha-induced apoptosis and interleukin-1 beta release in human subcutaneous adipocytes and preadipocytes. J Clin Endocrinol Metab 86:2817–2825

    Article  PubMed  CAS  Google Scholar 

  33. Hamed S, Egozi D, Kruchevsky D, Teot L, Gilhar A, Ullmann Y (2010) Erythropoietin improves the survival of fat tissue after its transplantation in nude mice. PLoS One 5:e13986

    Article  PubMed  Google Scholar 

  34. Suga H, Eto H, Aoi N, Kato H, Araki J, Doi K et al (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126:1911–1923

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto D, Shigeura T, Sato K, Inoue K, Suga H, Kato H et al (2007) Influences of preservation at various temperatures on liposuction aspirates. Plast Reconstr Surg 120:1510–1517

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lewis Crofts for revising the manuscript as a native English speaker.

Conflict of interest

The authors declare that they have no conflict of interest concerning the products presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Herold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herold, C., Rennekampff, H.O., Ohm, L. et al. Apoptosis in extracorporeal preserved inguinal fat flaps of the rat. Apoptosis 17, 400–409 (2012). https://doi.org/10.1007/s10495-011-0682-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0682-1

Keywords

Navigation