Skip to main content
Log in

Antiapoptotic effects of roscovitine on camptothecin-induced DNA damage in neuroblastoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the present study dopaminergic neuroblastoma B65 cells were exposed to Camptothecin (CPT) (0.5–10 μM), either alone or in the presence of roscovitine (ROSC). The results show that CPT induces apoptosis through the activation of ataxia telangiectasia mutated (ATM)-induced cell-cycle alteration in neuroblastoma B65 cells. The apoptotic process is mediated through the activation of cystein proteases, namely calpain/caspases. However, whereas a pan-caspase inhibitor, zVADfmk, inhibited CPT-mediated apoptosis, a calpain inhibitor, calpeptin, did not prevent cell death. Interestingly, CPT also induces CDK5 activation and ROSC (25 μM) blocked CDK5, ATM activation and apoptosis (as measured by caspase-3 activation). By contrast, selective inhibition of ATM, by KU55933, and non-selective inhibition, by caffeine, did not prevent CPT-mediated apoptosis. Thus, we conclude that CDK5 is activated in response to DNA damage and that CDK5 inhibition prevents ATM and p53ser15 activation. However, pharmacological inhibition of ATM using KU55933 and caffeine suggests that ATM inhibition by ROSC is not the only mechanism that might explain the anti-apoptotic effects of this drug in this apoptosis model. Our findings have a potential clinical implication, suggesting that combinatory drugs in the treatment of cancer activation should be administered with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goteti K, Garner CE, Utley L et al (2010) Preclinical pharmacokinetic/pharmacodynamic models to predict synergistic effects of co-administered anti-cancer agents. Cancer Chemother Pharmacol 66:245–254

    Article  PubMed  CAS  Google Scholar 

  2. Krystof V, Uldrijan S (2010) Cyclin-dependent kinase inhibitors as anticancer drugs. Curr Drug Targets 11:291–302

    Article  PubMed  CAS  Google Scholar 

  3. Abal M, Bras-Goncalves R, Judde JG (2004) Enhanced sensitivity to irinotecan by Cdk1 inhibition in the p53-deficient HT29 human colon cancer cell line. Oncogene 23:1737–1744

    Article  PubMed  CAS  Google Scholar 

  4. Zuco V, Benedetti V, Zunino F (2010) ATM- and ATR-mediated response to DNA damage induced by a novel camptothecin, ST1968. Cancer Lett 292:186–196

    Article  PubMed  CAS  Google Scholar 

  5. Aldoss IT, Tashi T, Ganti AK (2009) Seliciclib in malignancies. Expert Opin Investig Drugs 18:1957–1965

    Article  PubMed  CAS  Google Scholar 

  6. Zolnierczyk JD, Błoński JZ, Robak T, Kiliańska ZM, Wesierska-Gadek J (2009) Roscovitine triggers apoptosis in B-cell chronic lymphocytic leukemia cells with similar efficiency as combinations of conventional purine analogs with cyclophosphamide. Ann NY Acad Sci 1171:124–131

    Article  PubMed  CAS  Google Scholar 

  7. Bach S, Knockaert M, Reinhardt J et al (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280:31208–31219

    Article  PubMed  CAS  Google Scholar 

  8. Abaza MS, Bahman AM, Al-Attiyah RJ (2008) Roscovitine synergizes with conventional chemo-therapeutic drugs to induce efficient apoptosis of human colorectal cancer cells. World J Gastroenterol 14:5162–5175

    Article  PubMed  CAS  Google Scholar 

  9. Appleyard MV, O’Neill MA, Murray KE et al (2009) Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer 124:465–472

    Article  PubMed  CAS  Google Scholar 

  10. Lambert LA, Qiao N, Hunt KK et al (2007) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68:7966–7974

    Article  Google Scholar 

  11. Sadaie MR, Mayner R, Doniger J (2004) A novel approach to develop anti-HIV drugs: adapting non-nucleoside anticancer chemotherapeutics. Antiviral Res 61:1–18

    Article  PubMed  CAS  Google Scholar 

  12. DeStefino NR, Pilato AA, Dittrich M et al (2010) (R)-roscovitine prolongs the mean open time of unitary N-type calcium channel currents. Neuroscience 167:838–849

    Article  PubMed  CAS  Google Scholar 

  13. Lu W, Chen L, Peng Y, Chen J (2001) Activation of p53 by roscovitine-mediated suppression of MDM2 expression. Oncogene 20:3206–3216

    Article  PubMed  CAS  Google Scholar 

  14. Maude SL, Enders GH (2005) Cdk Inhibition in human cells compromises Chk1 function and activates a DNA damage response. Cancer Res 65:780–786

    PubMed  CAS  Google Scholar 

  15. Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  16. Pizarro JG, Yeste-Velasco M, Esparza JL et al (2008) The antiproliferative activity of melatonin in B65 rat dopaminergic neuroblastoma cells is related to the downregulation of cell cycle-related genes. J Pineal Res 45:8–16

    Article  PubMed  CAS  Google Scholar 

  17. Crescenzi E, Palumbo G, Brady HJ (2005) Roscovitine modulates DNA repair and senescence: implications for combination chemotherapy. Clin Cancer Res 11:8158–8171

    Article  PubMed  CAS  Google Scholar 

  18. Hui AB, Yue S, Shi W, Alajez NM et al (2009) Therapeutic efficacy of seliciclib in combination with ionizing radiation for human nasopharyngeal carcinoma. Clin Cancer Res 15:3716–3724

    Article  PubMed  CAS  Google Scholar 

  19. Pizarro JG, Folch J, Esparza JL et al (2009) A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286. J Cell Mol Med 13:3906–3917

    Article  PubMed  Google Scholar 

  20. Yeste-Velasco M, Folch J, Pallàs M, Camins A (2009) The p38 (MAPK) signalling pathway regulates neuronal apoptosis through the phosphorylation of the retinoblastoma protein. Neurochem Int 54:99–105

    Article  PubMed  CAS  Google Scholar 

  21. Pizarro JG, Folch J, Vazquez De la Torre A et al (2009) Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic Res 43:985–994

    Article  PubMed  CAS  Google Scholar 

  22. Ye Y, Tinari A, Malorni W, Lockshin RA, Zakeri Z. Activation of cyclin-dependent kinase 5 is a consequence of cell death. J Biomed Biotechnol 2009:805709

  23. Lee JH, Kim KT (2007) Regulation of cyclin-dependent kinase 5 and p53 by ERK1/2 pathway in the DNA damage-induced neuronal death. J Cell Physiol 210:784–797

    Article  PubMed  CAS  Google Scholar 

  24. Lee JH, Jeong MW, Kim W, Choi YH, Kim KT (2008) Cooperative roles of c-Abl and Cdk5 in regulation of p53 in response to oxidative stress. J Biol Chem 283:19826–35

    Google Scholar 

  25. Borgne A, Versteege I, Mahé M et al (2006) Analysis of cyclin B1 and CDK activity during apoptosis induced by camptothecin treatment. Oncogene 25:7361–7372

    Article  PubMed  CAS  Google Scholar 

  26. Hamdane M, Bretteville A, Sambo AV et al (2005) p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J Cell Sci 118:1291–1304

    Article  PubMed  CAS  Google Scholar 

  27. Hamdane M, Buée L (2007) The complex p25/Cdk5 kinase in neurofibrillary degeneration and neuronal death: the missing link to cell cycle. Biotechnol J 2:967–977

    Article  PubMed  CAS  Google Scholar 

  28. Pizarro JG, Folch J, de la Torre AV et al (2010) ATM is involved in cell-cycle control through the regulation of retinoblastoma protein phosphorylation. J Cell Biochem 110:210–218

    PubMed  CAS  Google Scholar 

  29. Kim D, Frank CL, Dobbin MM, Tsunemoto RK et al (2008) Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci 120:2259–2271

    Google Scholar 

  30. Camins A, Crespo-Biel N, Junyent F et al (2009) Calpains as a target for therapy of neurodegenerative diseases: putative role of lithium. Curr Drug Metab 10:433–447

    Article  PubMed  CAS  Google Scholar 

  31. Camins A, Verdaguer E, Folch J et al (2006) The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect 19:453–460

    Article  PubMed  CAS  Google Scholar 

  32. Chang K-H, de Pablo Y, Lee HP, et al. (2010) Cdk5 is a Major Regulator of p38 Cascade: Relevance to Neurotoxicity in Alzheimer’s Disease. J. Alzheimer’s Dis. doi:10.1111/j.1471-4159.2010.06687.x

  33. Ikiz B, Przedborski S (2008) A sequel to the tale of p25/Cdk5 in neurodegeneration. Neuron. 60:731–732

    Article  PubMed  CAS  Google Scholar 

  34. Sun KH, Lee HG, Smith MA, Shah K (2009) Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade: relevance to neurotoxic insults in Alzheimer’s disease. Mol Biol Cell 20:4611–4619

    Article  PubMed  CAS  Google Scholar 

  35. Kim D, Frank CL, Dobbin MM et al (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60:803–817

    Article  PubMed  CAS  Google Scholar 

  36. Renton A, Llanos S, Lu X (2003) Hypoxia induces p53 through a pathway distinct from most DNA-damaging and stress-inducing agents. Carcinogenesis 24:1177–1182

    Article  PubMed  CAS  Google Scholar 

  37. Huang E, Qu D, Zhang Y, Venderova K et al (2010) The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol 12:563–571

    Article  PubMed  CAS  Google Scholar 

  38. Federico M, Symonds CE, Bagella L et al (2010) Roscovitine (Seliciclib) prevents DNA damage-induced cyclin A1 upregulation and hinders non-homologous end-joining (NHEJ) DNA repair. Mol Cancer 9:208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Spain’s “Ministerio de Educación y Ciencia” SAF2009-13093 and BFU2010-19119/BFI the “Fondo de Investigación Sanitaria”, and the “Instituto de Salud Carlos III” PI080400 and PS09/01789 (FEDER FOUNDS). 610RT0405 from Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED). We would like to thank the “Generalitat de Catalunya” for supporting the research groups (2009/SGR00853) and the “Fundació la Marató TV3” (063230). We wish to thank the Language Assessment Service of the University of Barcelona for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Camins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizarro, J.G., Folch, J., Junyent, F. et al. Antiapoptotic effects of roscovitine on camptothecin-induced DNA damage in neuroblastoma cells. Apoptosis 16, 536–550 (2011). https://doi.org/10.1007/s10495-011-0583-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0583-3

Keywords

Navigation