Skip to main content

Advertisement

Log in

Aquatic birnavirus capsid protein, VP3, induces apoptosis via the Bad-mediated mitochondria pathway in fish and mouse cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Aquatic birnavirus induces post-apoptotic necrotic cell death via a newly synthesized protein-dependent pathway. However, the involvement of viral genome-encoded protein(s) in this death process remains unknown. In the present study, we demonstrated that the submajor capsid protein, VP3, up-regulates the pro-apoptotic protein, Bad, in fish and mouse cells. Western blot analysis revealed that VP3 was expressed in CHSE-214 cells at 4 h post-infection (pi), indicating an early role during viral replication. We cloned the VP3 gene and tested its function in fish and mouse cells; VP3 overexpression induced apoptotic cell death by TUNEL assay. In addition, it up-regulated Bad gene expression in zebrafish ZLE cells by threefold at 12 h post-transfection (pt) and in mouse NIH3T3 cells by tenfold at 24 h pt. VP3 up-regulation of Bad expression altered mitochondria function, inducing mitochondrial membrane potential (MMP) loss and activating initiator caspase-9 and effector caspase-3. Furthermore, reduced Bad expression (65% reduction), MMP loss (up to 40%), and enhanced cell viability (up to 60%) upon expression of VP3 antisense RNA in CHSE-214 cells at 24 h post-IPNV infection was observed. Finally, overexpression of the anti-apoptotic gene, zfBcl-xL, reduced VP3-induced apoptotic cell death and caspase-3 activation at 24 h in fish cells. Taken together, these results suggest that aquatic birnavirus VP3 induces apoptosis via up-regulation of Bad expression and mitochondrial disruption, which activates a downstream caspase-3-mediated death pathway that is blocked by zfBcl-xL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wyllie A, Kerr J, Currie A (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  2. Newton K, Strasser A (1998) The Bcl-2 family and cell death regulation. Curr Opin Gene Develop 8:68–75

    Article  CAS  Google Scholar 

  3. Farrow S, Brown R (1996) New members of the Bcl-2 family and their protein partners. Curr Opin Gene Develop 6:45–49

    Article  CAS  Google Scholar 

  4. Oltvai Z, Milliman C, Korsmeyer S (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  5. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death. Cell 80:285–291

    Article  CAS  PubMed  Google Scholar 

  6. Zha J, Harada H, Yang E, Jockel J, Korsmeyer S (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell 87:619–628

    Article  CAS  PubMed  Google Scholar 

  7. Cartier A, Komai T, Masucci MG (2003) The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosporylation of the Bcl-2 family member Bad. Exp Cell Res 291:242–250

    Article  CAS  PubMed  Google Scholar 

  8. Tudor G, Aguilera A, Halverson DO, Laing ND, Sausville EA (2000) Susceptibility to drug-induced apoptosis correlates with differential modulation of Bad, Bcl-2 and Bcl-xL protein levels. Cell Death Differ 7:574–586

    Article  CAS  PubMed  Google Scholar 

  9. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  CAS  PubMed  Google Scholar 

  10. Dobos P, Hill B, Hallett R, Kells D, Becht H, Teninges D (1979) Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol 32:593–605

    CAS  PubMed  Google Scholar 

  11. Dobos P (1995) The molecular biology of infectious pancreatic necrosis virus (IPNV). Annu Rev Fish Dis 5:25–54

    Article  Google Scholar 

  12. Wu JL, Chang CY, Hsu YL (1987) Characteristics of an infectious pancreatic necrosis like virus isolated from Japanese eel (Anguilla japonina). Bull Inst Zoo Acad Sinica 26:201–214

    Google Scholar 

  13. Hjalmarsson A, Carlemalm E, Everitt E (1999) Infectious pancreatic necrosis: identification of a VP3-containing ribonucleoprotein core structure and evidence for O-linked glycosylation of the capsid protein VP2. J Virol 73:3484–3490

    CAS  PubMed  Google Scholar 

  14. Pedersen T, Skjesol A, Jorgensen JB (2007) VP3, a structural protein of infectious pancreatic virus interacts with RNA-dependent RNA polymerase VP1 and with double-stranded RNA. J Virol 81:6652–6663

    Article  CAS  PubMed  Google Scholar 

  15. Hong JR, Gong HY, Wu JL (2002) IPNV VP5, a novel anti-apoptosis gene of the Bcl-2 family, regulates Mcl-1 and viral protein expression. Virology 295:217–229

    Article  CAS  PubMed  Google Scholar 

  16. Hong JR, Lin TL, Hsu YL, Wu JL (1998) Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology 250:76–84

    Article  CAS  PubMed  Google Scholar 

  17. Hong JR, Hsu YL, Wu JL (1999) Infectious pancreatic necrosis virus induces apoptosis due to down-regulation of survival factor MCL-1 protein expression in a fish cell line. Virus Res 63:75–83

    Article  CAS  PubMed  Google Scholar 

  18. Hong JR, Wu JL (2002) Induction of apoptotic death in cells via Bad gene expression by Infectious pancreatic necrosis virus infection. Cell Death Differ 9:113–124

    Article  CAS  PubMed  Google Scholar 

  19. Hong JR, Huang LJ, Wu JL (2005) Aquatic birnavirus induces apoptosis through activated caspase-8 and -3 in a zebrafish cell line. J Fish Dis 28:133–140

    Article  CAS  PubMed  Google Scholar 

  20. Hong JR, Guan BJ, Her GM, Evensen O, Santi N, Wu JL (2008) Aquatic birnavirus infection activates the transcription factor NF-κB via tyrosine kinase signalling leading to cell death. J Fish Dis 31:451–460

    Article  CAS  PubMed  Google Scholar 

  21. Hwang HJ, Moon CH, Kim HG, Kim JY, Lee JM, Park JW, Chung DK (2007) Identification and functional analysis of salmon annexin 1 induced by a virus infection in a fish cell line. J Virol 81:13816–13824

    Article  CAS  PubMed  Google Scholar 

  22. Chen PC, Wu JL, Her GM, Hong JR (2009) Aquatic birnavirus induces necrotic cell death via the mitochondria-mediated caspase pathway. Fish Shellfish Immunol. doi:10.1016/j.fsi.2009.11.014 (in press)

  23. Nicholson B, Dunn J (1974) Homologous viral interference in trout and Atlantic salmon cell cultures infected with infectious pancreatic necrosis virus. Am Soc Microbiol 14:180–182

    CAS  Google Scholar 

  24. Hong JR, Lin TL, Yang JY, Hsu YL, Wu JL (1999) Dynamics of nontypical apoptotic morphological changes visualized by green fluorescent protein in living cells with infectious pancreatic necrosis virus infection. J Virol 73:5056–5063

    CAS  PubMed  Google Scholar 

  25. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  26. Kain S, Mai K, Sinai P (1994) Human multiple tissue western blots: a new immunological tool for the analysis of tissue-specific protein expression. Biotechniques 17:982–987

    CAS  PubMed  Google Scholar 

  27. Chen SP, Yang HL, Her GM, Lin HY, Jeng MF, Wu JL, Hong JR (2006) Betanodavirus induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid. Virology 347:379–391

    Article  CAS  PubMed  Google Scholar 

  28. Chen LJ, Su YC, Hong JR (2009) Betanodavirus non-structural protein B1: a novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385:444–454

    Article  CAS  PubMed  Google Scholar 

  29. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2004) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  Google Scholar 

  30. An S, Knox K (1996) Ligation of CD40 rescues Ramos–Burkitt lymphoma B cells from calcium ionophore-and antigen receptor-triggered apoptosis by inhibiting activation of the cysteine protease CPP32/Yama and cleavage of its substrate PARP. FEBS Lett 386:15–122

    Article  Google Scholar 

  31. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  32. Maniak M, Rauchenberger R, Albrecht R, Murphy J, Gerisch G (1995) Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein tag. Cell 83:915–924

    Article  CAS  PubMed  Google Scholar 

  33. Oparka K, Roberts A, Santa Cruz S, Boevink P, Prior D, Smallcombe A (1997) Using GFP to study virus invasion and spread in plant tissues. Nature 388:401–402

    Article  CAS  Google Scholar 

  34. Espinoza J, Hjalmarsson A, Everitt E, Kuznar J (2000) Temporal and subcellular localization of infectious pancreatic necrosis virus structural proteins. Arch Virol 145:739–748

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–497

    Article  CAS  PubMed  Google Scholar 

  36. Seet BT, Hohnston JB, Brunetti CD, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G (2003) Poxviruses and immune evasion. Annu Rev Immunol 21:377–423

    Article  CAS  PubMed  Google Scholar 

  37. Evertt H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Microbiol 7:160–165

    Article  Google Scholar 

  38. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018

    Article  CAS  PubMed  Google Scholar 

  39. Wu HC, Chiu CS, Wu JL, Gong HY, Chen MC, Lu MW, Hong JR (2008) Zebrafish anti-apoptotic protein zfBcl-xL can block betnodavirus protein α-induced mitochondria-mediated secondary necrosis cell death. Fish Shell Immunol 24:436–449

    Article  CAS  Google Scholar 

  40. Su YC, Wu JL, Hong JR (2008) Betanodavirus non-structural protein B2: a novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 385:143–154

    Article  PubMed  Google Scholar 

  41. Datta S, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg M (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–242

    Article  CAS  PubMed  Google Scholar 

  42. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689

    Article  PubMed  Google Scholar 

  43. Freilinger A, Rosner M, Krupitza G, Nishino M, Lubec G, Korsmeyer S, Hengstschlager M (2006) Tuberin activates the proapoptotic molecule BAD. Oncogene 25:6467–6479

    Article  CAS  PubMed  Google Scholar 

  44. Hayakawa J, Ohmichi M, Kurachi H, Kanda Y, Hisamoto K, Nishio Y, Adachi K, Tasaka K, Kanzaki T, Murata Y (2000) Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 60:5988–5994

    CAS  PubMed  Google Scholar 

  45. Chen SP, Wu JL, Su YC, Hong JR (2007) Anti-Bcl-2 family members, zfBcl-x L and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 12:1043–1060

    Article  CAS  PubMed  Google Scholar 

  46. Zander K, Sherman M, Tessmer U, Bruns K, Wray V, Prechtel A, Schubert E, Henklein P, Luban J, Neidleman J, Greene WC, Schubert U (2003) Cyclophilin A interacts with HIV-1 Vpr and is required for its functional expression. J Biol Chem 278:43202–43213

    Article  CAS  PubMed  Google Scholar 

  47. Takada S, Shirakata Y, Kaneniwa N, Koike K (1999) Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene 18:6965–6973

    Article  CAS  PubMed  Google Scholar 

  48. Boyce M, Degterev A, Yuan J (2004) Caspases: an ancient cellular sword of Damocles. Cell Death Differ 11:29–37

    Article  CAS  PubMed  Google Scholar 

  49. Sato A, Hiramoto A, Uchikubo Y, Miyazaki E, Satake A, Naito T, Hiraoka O, Miyake T, Kim HS, Wataya Y (2008) Gene expression profiles of necrosis and apoptosis induced by 5-fluoro-2′-deoxyuridine. Genomics 92:9–17

    Article  CAS  PubMed  Google Scholar 

  50. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  Google Scholar 

  51. Hong JR, Wu JL (2002) Molecular regulation of cellular apoptosis by fish infectious pancreatic necrosis virus (IPNV) infection. Curr Top Virol 2:151–160

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Wu (Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan) for providing the zfBcl-xL and IPNV VP5 expression plasmids and anti-IPNV E1S VP3 monoclonal antibodies (MAb, 8-42-E7). This work was supported by grants from the National Science Council, Taiwan, Republic of China awarded to Dr. Jainn-Ruey Hong (NSC-92-2313-B006-005 and NSC 96-2313-B-004-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiann-Ruey Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CL., Wu, JL., Her, GM. et al. Aquatic birnavirus capsid protein, VP3, induces apoptosis via the Bad-mediated mitochondria pathway in fish and mouse cells. Apoptosis 15, 653–668 (2010). https://doi.org/10.1007/s10495-010-0468-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0468-x

Keywords

Navigation