Skip to main content
Log in

Structural basis for executioner caspase recognition of P5 position in substrates

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Caspase-3, -6 and -7 cleave many proteins at specific sites to induce apoptosis. Their recognition of the P5 position in substrates has been investigated by kinetics, modeling and crystallography. Caspase-3 and -6 recognize P5 in pentapeptides as shown by enzyme activity data and interactions observed in the crystal structure of caspase-3/LDESD and in a model for caspase-6. In caspase-3 the P5 main-chain was anchored by interactions with Ser209 in loop-3 and the P5 Leu side-chain interacted with Phe250 and Phe252 in loop-4 consistent with 50% increased hydrolysis of LDEVD relative to DEVD. Caspase-6 formed similar interactions and showed a preference for polar P5 in QDEVD likely due to interactions with polar Lys265 and hydrophobic Phe263 in loop-4. Caspase-7 exhibited no preference for P5 residue in agreement with the absence of P5 interactions in the caspase-7/LDESD crystal structure. Initiator caspase-8, with Pro in the P5-anchoring position and no loop-4, had only 20% activity on tested pentapeptides relative to DEVD. Therefore, caspases-3 and -6 bind P5 using critical loop-3 anchoring Ser/Thr and loop-4 side-chain interactions, while caspase-7 and -8 lack P5-binding residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

CHO:

Aldehyde

pNA:

p-Nitroanilide

RMS:

Root mean square

References

  1. Tacconi S, Perri R, Balestrieri E et al (2004) Increased caspase activation in peripheral blood mononuclear cells of patients with Alzheimer’s disease. Exp Neurol 190(1):254–262. doi:10.1016/j.expneurol.2004.07.009

    Article  PubMed  CAS  Google Scholar 

  2. Hartmann A, Troadec JD, Hunot S et al (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21(7):2247–2255

    PubMed  CAS  Google Scholar 

  3. Hermel E, Gafni J, Propp SS et al (2004) Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ 11(4):424–438. doi:10.1038/sj.cdd.4401358

    Article  PubMed  CAS  Google Scholar 

  4. LeBlanc AC (2005) The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr Alzheimer Res 2(4):389–402. doi:10.2174/156720505774330573

    Article  PubMed  CAS  Google Scholar 

  5. Zidar N, Jera J, Maja J, Dusan S (2007) Caspases in myocardial infarction. Adv Clin Chem 44:1–33. doi:10.1016/S0065-2423(07)44001-X

    Article  PubMed  CAS  Google Scholar 

  6. Takemura G, Fujiwara H (2006) Morphological aspects of apoptosis in heart diseases. J Cell Mol Med 10(1):56–75. doi:10.1111/j.1582-4934.2006.tb00291.x

    Article  PubMed  CAS  Google Scholar 

  7. Kim HS, Lee JW, Soung YH et al (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125(3):708–715. doi:10.1016/S0016-5085(03)01059-X

    Article  PubMed  CAS  Google Scholar 

  8. Soung YH, Lee JW, Kim SY et al (2005) CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 65(3):815–821

    PubMed  CAS  Google Scholar 

  9. Volkmann X, Cornberg M, Wedemeyer H et al (2006) Caspase activation is required for antiviral treatment response in chronic hepatitis C virus infection. Hepatology 43(6):1311–1316. doi:10.1002/hep.21186

    Article  PubMed  CAS  Google Scholar 

  10. Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311(5762):847–851. doi:10.1126/science.1115035

    Article  PubMed  CAS  Google Scholar 

  11. Fischer U, Schulze-Osthoff K (2005) Apoptosis-based therapies and drug targets. Cell Death Differ 12(Suppl 1):942–961. doi:10.1038/sj.cdd.4401556

    Article  PubMed  CAS  Google Scholar 

  12. Baskin-Bey ES, Washburn K, Feng S et al (2007) Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant 7(1):218–225. doi:10.1111/j.1600-6143.2006.01595.x

    Article  PubMed  CAS  Google Scholar 

  13. Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115(10):2665–2672. doi:10.1172/JCI26252

    Article  PubMed  CAS  Google Scholar 

  14. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384(Pt 2):201–232. doi:10.1042/BJ20041142

    PubMed  CAS  Google Scholar 

  15. Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10(1):76–100. doi:10.1038/sj.cdd.4401160

    Article  PubMed  CAS  Google Scholar 

  16. Wei Y, Fox T, Chambers SP et al (2000) The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 7(6):423–432. doi:10.1016/S1074-5521(00)00123-X

    Article  PubMed  CAS  Google Scholar 

  17. Schweizer A, Briand C, Grutter MG (2003) Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 278(43):42441–42447. doi:10.1074/jbc.M304895200

    Article  PubMed  CAS  Google Scholar 

  18. Shiozaki EN, Chai J, Rigotti DJ et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527. doi:10.1016/S1097-2765(03)00054-6

    Article  PubMed  CAS  Google Scholar 

  19. Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272(29):17907–17911. doi:10.1074/jbc.272.29.17907

    Article  PubMed  CAS  Google Scholar 

  20. Fang B, Boross PI, Tozser J, Weber IT (2006) Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. J Mol Biol 360(3):654–666. doi:10.1016/j.jmb.2006.05.041

    Article  PubMed  CAS  Google Scholar 

  21. Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14(1):66–72. doi:10.1038/sj.cdd.4402059

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Calvo M, Peterson EP, Rasper DM et al (1999) Purification and catalytic properties of human caspase family members. Cell Death Differ 6(4):362–369. doi:10.1038/sj.cdd.4400497

    Article  PubMed  CAS  Google Scholar 

  23. Agniswamy J, Fang B, Weber IT (2007) Plasticity of S2–S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis. FEBS J 274(18):4752–4765. doi:10.1111/j.1742-4658.2007.05994.x

    Article  PubMed  CAS  Google Scholar 

  24. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  25. McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61(4):458–464

    Article  PubMed  Google Scholar 

  26. Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59(7):1131–1137

    Article  PubMed  Google Scholar 

  27. Sheldrick GM, Schneider TR (1997) SHELXL: High-resolution refinement. Methods Enzymol 277:319–343

    Article  PubMed  CAS  Google Scholar 

  28. Jones TA, Zou JY, Cowan SW, Kjeldgaard (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(2):110–119

    Article  PubMed  Google Scholar 

  29. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(12–1):2126–2132

    Article  PubMed  Google Scholar 

  30. Lovell SC, Davis IW, Arendall WBIII et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450

    Article  PubMed  CAS  Google Scholar 

  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  32. Merritt EA, Murphy ME (1994) Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr 50(6):869–873

    Article  PubMed  CAS  Google Scholar 

  33. Kullback S (1959) Information theory and statistics. Wiley, New York

    Google Scholar 

  34. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  35. Harrison RW (1993) Stiffness and Energy Conservation in Molecular Dynamics: an Improved Integrator. J Comp Chem 14:1112–1122

    Article  CAS  Google Scholar 

  36. Harrison RW, Chatterjee D, Weber IT (1995) Analysis of six protein structures predicted by comparative modeling techniques. Proteins 23(4):463–471

    Article  PubMed  CAS  Google Scholar 

  37. Bagossi P, Tozser J, Weber IT, Harrison RW (1999) Modification of parameters of the charge equilibrium scheme to achieve better correlation with experimental dipole moments. J Mol Model 5:143–152

    Article  CAS  Google Scholar 

  38. Harrison RW (1999) A Self-Assembling Neural Network for Modeling Polymers. J Math Chem 26:125–137

    Article  Google Scholar 

  39. Wilson KP, Black JA, Thomson JA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370(6487):270–275

    Article  PubMed  CAS  Google Scholar 

  40. Talanian RV, Quinlan C, Trautz S et al (1997) Substrate specificities of caspase family proteases. J Biol Chem 272(15):9677–9682

    Article  PubMed  CAS  Google Scholar 

  41. Onteniente B (2004) Natural and synthetic inhibitors of caspases: targets for novel drugs. Curr Drug Targets CNS Neurol Disord 3(4):333–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G.F. and B·F. were supported in part by the Georgia State University Research Program Enhancement award. B·F. was supported by the Georgia State University Molecular Basis of Disease Fellowship. I.T.W. and R.W·H. are Georgia Cancer Coalition Distinguished Cancer Scholars. This research was supported in part by the Georgia Research Alliance, the Georgia Cancer Coalition and the National Institutes of Health award GM065762. We thank the staff at the SER-CAT beamline at the Advanced Photon Source, Argonne National Laboratory, for assistance during X-ray data collection. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene T. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, G., Chumanevich, A.A., Agniswamy, J. et al. Structural basis for executioner caspase recognition of P5 position in substrates. Apoptosis 13, 1291–1302 (2008). https://doi.org/10.1007/s10495-008-0259-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0259-9

Keywords

Navigation