Skip to main content
Log in

Promotion of cell death or neurite outgrowth in PC-12 and N2a cells by the fungal alkaloid militarinone A depends on basal expression of p53

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The fungal alkaloid militarinone A (MiliA) was recently found to stimulate neuronal outgrowth in PC-12 cells by persistant activation of pathways that are also involved in NGF-mediated differentiation, namely the PI3-K/PKB and the MEK/ERK pathways. Application of equal concentrations of MiliA to other cells such as the murine neuroblastoma cell line N2a resulted in immediate onset of apoptosis by nuclear translocation of apoptosis inducing factor (AIF), activation of caspases and c-Jun/AP-1 transcription factor without an intermediate differentiated phenotype, although minor transient phosphorylation of PKB and MAPK as well as activation of NF-κB were also observed. Translocation of AIF was preceded by p53 phosphorylation at Ser15 and blocked by pifithrin α, a known inhibitor of p53-transcriptional activity. We here show that both cell types activate the same pathways albeit in different time scales. This is mainly due to contrasting basal expression levels of p53, which in turn regulates expression of AIF. In PC-12 cells, continuous activation of these pathways after prolonged treatment with 40 μM MiliA first led to up-regulation of p53, phosphorylation of p53, release of AIF from mitochondria and its translocation into the nucleus. Additionally, also activation of the c-Jun/AP-1 transcription factor was observed, and PC-12 cells subsequently underwent apoptosis 48–72 h post-treatment. We report that similar pathways working on different levels are able to initially shape very divergent cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blesch A (2006) Neurotrophic factors in neurodegeneration. Brain Pathol 16:295–303

    Article  PubMed  CAS  Google Scholar 

  2. Pollack SJ, Harper SJ (2002) Small molecule Trk receptor agonists and other neurotrophic factor mimetics. Curr Drug Targets CNS Neurol Disord 1:59–80

    Article  PubMed  CAS  Google Scholar 

  3. Riese U, Ziegler E, Hamburger M (2004) Militarinone A induces differentiation in PC12 cells via MAP and Akt kinase signal transduction pathways. FEBS Lett 577:455–459

    Article  PubMed  CAS  Google Scholar 

  4. Frebel K, Wiese S (2006) Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans 34:1287–1290

    Article  PubMed  CAS  Google Scholar 

  5. Vaudry D, Stork PJS, Lazarovici P, Eiden LE (2002) Differentiation pathway in PC12 Cells. Sci. STKE. http://stke.sciencemag.org/cgi/cm/stkecm;CMP_8038

  6. Philpott KL, McCarthy MJ, Klippel A, Rubin LL (1997) Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol 139:809–815

    Article  PubMed  CAS  Google Scholar 

  7. Kimura K, Hattori S, Kabuyama Y et al (1994) Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J Biol Chem 269:18961–18967

    PubMed  CAS  Google Scholar 

  8. Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31:151–174

    Article  PubMed  CAS  Google Scholar 

  9. Kimmelman AC, Nunez Rodriguez N, Chan AM (2002) R-Ras3/M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated protein kinase cascade. Mol Cell Biol 22:5946–5961

    Article  PubMed  CAS  Google Scholar 

  10. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    Article  PubMed  CAS  Google Scholar 

  11. Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 28:834–843

    Article  PubMed  CAS  Google Scholar 

  12. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    Article  PubMed  CAS  Google Scholar 

  13. Cande C, Cohen I, Daugas E et al (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222

    Article  PubMed  CAS  Google Scholar 

  14. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  15. Urbano A, Lakshmanan U, Choo PH et al (2005) AIF suppresses chemical stress-induced apoptosis and maintains the transformed state of tumor cells. Embo J 24:2815–2826

    Article  PubMed  CAS  Google Scholar 

  16. Stambolsky P, Weisz L, Shats I et al (2006) Regulation of AIF expression by p53. Cell Death Differ 13:2140–2149

    Article  PubMed  CAS  Google Scholar 

  17. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467

    Article  PubMed  CAS  Google Scholar 

  18. Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling—which way to target? Trends Pharmacol Sci 24:366–376

    Article  PubMed  CAS  Google Scholar 

  19. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  20. Hofseth LJ, Hussain SP, Harris CC (2004) p53: 25 years after its discovery. Trends Pharmacol Sci 25:177–181

    Article  PubMed  CAS  Google Scholar 

  21. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  PubMed  CAS  Google Scholar 

  22. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  CAS  Google Scholar 

  23. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  PubMed  CAS  Google Scholar 

  24. Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry (Mosc) 71:962–974

    Article  CAS  Google Scholar 

  25. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  26. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    Article  PubMed  CAS  Google Scholar 

  27. Rossler OG, Steinmuller L, Giehl KM, Thiel G (2002) Role of c-Jun concentration in neuronal cell death. J Neurosci Res 70:655–664

    Article  PubMed  CAS  Google Scholar 

  28. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  CAS  Google Scholar 

  29. van Delft MF, Huang DC (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16:203–213

    Article  PubMed  CAS  Google Scholar 

  30. Kuenzi P, Schneider P, Dobbelaere DA (2003) Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. J Immunol 171:1224–1231

    PubMed  Google Scholar 

  31. Heussler VT, Kuenzi P, Fraga F, Schwab RA, Hemmings BA, Dobbelaere DA (2001) The Akt/PKB pathway is constitutively activated in Theileria-transformed leucocytes, but does not directly control constitutive NF-kappaB activation. Cell Microbiol 3:537–550

    Article  PubMed  CAS  Google Scholar 

  32. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  PubMed  CAS  Google Scholar 

  33. Botteron C, Dobbelaere D (1998) AP-1 and ATF-2 are constitutively activated via the JNK pathway in Theileria parva-transformed T-cells. Biochem Biophys Res Commun 246:418–421

    Article  PubMed  CAS  Google Scholar 

  34. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  35. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt K, Gunther W, Stoyanova S, Schubert B, Li Z, Hamburger M (2002) Militarinone A, a neurotrophic pyridone alkaloid from Paecilomyces militaris. Org Lett 4:197–199

    Article  PubMed  CAS  Google Scholar 

  37. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis: an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  38. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  PubMed  CAS  Google Scholar 

  39. Bar J, Lukaschuk N, Zalcenstein A, Wilder S, Seger R, Oren M (2005) The PI3K inhibitor LY294002 prevents p53 induction by DNA damage and attenuates chemotherapy-induced apoptosis. Cell Death Differ 12:1578–1587

    Article  PubMed  CAS  Google Scholar 

  40. Bouleau S, Parvu-Ferecatu I, Rodriguez-Enfedaque A et al (2007) Fibroblast growth factor 1 inhibits p53-dependent apoptosis in PC12 cells. Apoptosis 12:1377–1387

    Article  PubMed  CAS  Google Scholar 

  41. Nakanishi M, Ozaki T, Yamamoto H et al (2007) NFBD1/MDC1 associates with p53 and regulates its function at the crossroad between cell survival and death in response to DNA damage. J Biol Chem 282:22993–23004

    Article  PubMed  CAS  Google Scholar 

  42. Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  43. Franzoso G, Zazzeroni F, Papa S (2003) JNK: a killer on a transcriptional leash. Cell Death Differ 10:13–15

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Maderuelo MD, Fernandez-Renart M, Moratilla C, Renart J (2001) Opposite effects of the Hsp90 inhibitor Geldanamycin: induction of apoptosis in PC12, and differentiation in N2A cells. FEBS Lett 490:23–27

    Article  PubMed  CAS  Google Scholar 

  45. Cheng Y, Schneider B, Riese U, Schubert B, Li Z, Hamburger M (2006) (+)-N-Deoxymilitarinone A, a neuritogenic pyridone alkaloid from the insect pathogenic fungus Paecilomyces farinosus. J Nat Prod 69:436–438

    Article  PubMed  CAS  Google Scholar 

  46. Symons M, Takai Y (2001) Ras GTPases: singing in tune. Sci STKE 2001: PE1

    Article  PubMed  CAS  Google Scholar 

  47. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  PubMed  CAS  Google Scholar 

  48. Xu J, Ji LD, Xu LH (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 166:160–167

    Article  PubMed  CAS  Google Scholar 

  49. Sabbatini P, McCormick F (1999) Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem 274:24263–24269

    Article  PubMed  CAS  Google Scholar 

  50. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  51. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  52. Dobbelaere DA, Kuenzi P (2004) The strategies of the Theileria parasite: a new twist in host-pathogen interactions. Curr Opin Immunol 16:524–530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hamburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küenzi, P., Kiefer, S., Koryakina, A. et al. Promotion of cell death or neurite outgrowth in PC-12 and N2a cells by the fungal alkaloid militarinone A depends on basal expression of p53. Apoptosis 13, 364–376 (2008). https://doi.org/10.1007/s10495-008-0185-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0185-x

Keywords

Navigation