Skip to main content

Advertisement

Log in

Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We have previously shown that when skeletal myoblasts are cultured in differentiation medium (DM), roughly 30% undergo caspase 3-dependent apoptosis rather than differentiation. Herein, we investigate the molecular mechanism responsible for the activation of caspase 3 and the ensuing apoptosis. When 23A2 myoblasts are cultured in DM, caspase 9 activity is increased and pharmacological abrogation of caspase 9 activation impairs caspase 3 activation and apoptosis. Further, we detect a time dependent release of mitochondrial cytochrome C into the cytosol in roughly 30% of myoblasts. Inclusion of cycloheximide inhibits the release of cytochrome C, the activation of caspase 9 and apoptosis. These data indicate that the mitochondrial pathway plays a role in this apoptotic process and that engagement of this pathway relies on de novo protein synthesis. Through RT-PCR and immunoblot analysis, we have determined that the expression level of the pro-apoptotic Bcl2 family member PUMA is elevated when 23A2 myoblasts are cultured in DM. Further, silencing of PUMA inhibits the release of cytochrome C and apoptosis. Signaling by the transcription factor p53 is not responsible for the increased level of PUMA. Finally, myoblasts rescued from apoptosis by either inhibition of elevated caspase 9 activity or silencing of PUMA are competent for differentiation. These results indicate a critical role for PUMA in the apoptosis associated with skeletal myoblast differentiation and that a p53-independent mechanism is responsible for the increased expression of PUMA in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sandri MC, Massimino M, Geromel ML, Arslan P (1996) Myoblasts and myotubes in primary cultures deprived of growth factors undergo apoptosis. Basic Appl. Myol. 6:257–260

    Google Scholar 

  2. Chinni C, de Niese MR, Tew DJ, Jenkins AL, Bottomley SP, Mackie EJ (1999) Thrombin, a survival factor for cultured myoblasts. J Biol Chem 274:9169–9174

    Article  PubMed  CAS  Google Scholar 

  3. Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273:359–361

    Article  PubMed  CAS  Google Scholar 

  4. Dee K, Freer M, Mei Y, Weyman CM (2002) Apoptosis coincident with the differentiation of skeletal myoblasts is delayed by caspase 3 inhibition and abrogated by MEK-independent constitutive Ras signaling. Cell Death Differ 9:209–218

    Article  PubMed  CAS  Google Scholar 

  5. Mampuru LJ, Chen SJ, Kalenik JL, Bradley ME, Lee TC (1996) Analysis of events associated with serum deprivation-induced apoptosis in C3H/Sol8 muscle satellite cells. Exp Cell Res 226:372–380

    Article  PubMed  CAS  Google Scholar 

  6. Miller JB, Stockdale FE (1986) Developmental regulation of the multiple myogenic cell lineages of the avian embryo. J Cell Biol 103:2197–2208

    Article  PubMed  CAS  Google Scholar 

  7. Fidzianska A, Goebel HH (1991) Human ontogenesis. 3. Cell death in fetal muscle. Acta Neuropathol (Berl) 81:572–577

    Article  CAS  Google Scholar 

  8. Sandri M, Carraro U (1999) Apoptosis of skeletal muscles during development and disease. Int J Biochem Cell Biol 31:1373–1390

    Article  PubMed  CAS  Google Scholar 

  9. Sandri M, El Meslemani AH, Sandri C et al (2001) Caspase 3 expression correlates with skeletal muscle apoptosis in Duchenne and facioscapulo human muscular dystrophy. A potential target for pharmacological treatment? J Neuropathol Exp Neurol 60:302–312

    PubMed  CAS  Google Scholar 

  10. Skuk D, Tremblay JP (2003) Cell therapies for inherited myopathies. Curr Opin Rheumatol 15:723–729

    Article  PubMed  Google Scholar 

  11. Skuk D, Tremblay JP (2003) Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J Muscle Res Cell Motil 24:285–300

    Article  PubMed  CAS  Google Scholar 

  12. Skuk D, Caron NJ, Goulet M, Roy B, Tremblay JP (2003) Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol 62:951–967

    PubMed  CAS  Google Scholar 

  13. Menasche P (2004) Myoblast transfer in heart failure. Surg Clin North Am 84:125–139

    Article  PubMed  Google Scholar 

  14. Menasche P (2004) Skeletal myoblast transplantation for cardiac repair. Expert Rev Cardiovasc Ther 2:21–28

    Article  PubMed  Google Scholar 

  15. Ciammola A, Sassone J, Alberti L et al (2006) Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington’s disease subjects. Cell Death Differ 13:2068–2078

    Article  PubMed  CAS  Google Scholar 

  16. Du J, Wang X, Miereles C et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Guo K, Wills KN, Walsh K (1997) Rb functions to inhibit apoptosis during myocyte differentiation. Cancer Res 57:351–354

    PubMed  CAS  Google Scholar 

  18. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169:555–560

    Article  PubMed  CAS  Google Scholar 

  19. Cerone MA, Marchetti A, Bossi G, Blandino G, Sacchi A, Soddu S (2000) p53 is involved in the differentiation but not in the differentiation-associated apoptosis of myoblasts. Cell Death Differ 7:506–508

    Article  PubMed  CAS  Google Scholar 

  20. O’Flaherty J, Mei Y, Freer M, Weyman CM (2006) Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation. Apoptosis 11:2103–2113

    Article  PubMed  CAS  Google Scholar 

  21. Karasarides M, Dee K, Schulman D, Wolfman A, Weyman CM (2006) Active Ras-induced effects on skeletal myoblast differentiation and apoptosis are independent of constitutive PI3-kinase activity. Cell Biol Int 30:308–318

    Article  PubMed  CAS  Google Scholar 

  22. Dee K, DeChant A, Weyman CM (2003) Differential signaling through NFkappaB does not ameliorate skeletal myoblast apoptosis during differentiation. FEBS Lett 545:246–252

    Article  PubMed  CAS  Google Scholar 

  23. DeChant AK, Dee K, Weyman CM (2002) Raf-induced effects on the differentiation and apoptosis of skeletal myoblasts are determined by the level of Raf signaling: abrogation of apoptosis by Raf is downstream of caspase 3 activation. Oncogene 21:5268–5279

    Article  PubMed  CAS  Google Scholar 

  24. Mercer SE, Ewton DZ, Deng X, Lim S, Mazur TR, Friedman E (2005) Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts. J Biol Chem 280:25788–25801

    Article  PubMed  CAS  Google Scholar 

  25. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699

    Article  PubMed  CAS  Google Scholar 

  26. Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444

    Article  PubMed  CAS  Google Scholar 

  27. Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9:505–512

    Article  PubMed  CAS  Google Scholar 

  28. Weyman CM, Ramocki MB, Taparowsky EJ, Wolfman A (1997) Distinct signaling pathways regulate transformation and inhibition of skeletal muscle differentiation by oncogenic Ras. Oncogene 14:697–704

    Article  PubMed  CAS  Google Scholar 

  29. Weyman CM, Wolfman A (1998) Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor 2. Endocrinology 139:1794–1800

    Article  PubMed  CAS  Google Scholar 

  30. Weyman CM, Wolfman A (1997) Oncogenic Ras-induced secretion of a novel inhibitor of skeletal myoblast differentiation. Oncogene 15:2521–2528

    Article  PubMed  CAS  Google Scholar 

  31. Vaidya TB, Weyman CM, Teegarden D, Ashendel CL, Taparowsky EJ (1991) Inhibition of myogenesis by the H-ras oncogene: implication of a role for protein kinase C. J Cell Biol 114:809–820

    Article  PubMed  CAS  Google Scholar 

  32. Konieczny SF, Emerson CP Jr 1984 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell 38:791–800

    Article  PubMed  CAS  Google Scholar 

  33. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  34. Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149:19–23

    Article  PubMed  CAS  Google Scholar 

  35. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    Article  PubMed  CAS  Google Scholar 

  37. Han J, Flemington C, Houghton AB et al (2001) Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A 98:11318–11323

    Article  PubMed  CAS  Google Scholar 

  38. Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  39. Porrello A, Cerone MA, Coen S et al (2000) p53 regulates myogenesis by triggering the differentiation activity of pRb. J Cell Biol 151:1295–1304

    Article  PubMed  CAS  Google Scholar 

  40. Zeuner A, Eramo A, Peschle C, De Maria R (1999) Caspase activation without death. Cell Death Differ 6:1075–1080

    Article  PubMed  CAS  Google Scholar 

  41. Schwerk C, Schulze-Osthoff K (2003) Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem Pharmacol 66:1453–1458

    Article  PubMed  CAS  Google Scholar 

  42. Dominov JA, Dunn JJ, Miller JB (1998) Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J Cell Biol 142:537–544

    Article  PubMed  CAS  Google Scholar 

  43. Melino G, De Laurenzi V, Vousden KH (2002) p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2:605–615

    Article  PubMed  CAS  Google Scholar 

  44. Melino G, Bernassola F, Ranalli M et al (2004) p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279:8076–8083

    Article  PubMed  CAS  Google Scholar 

  45. Belloni L, Moretti F, Merlo P et al (2006) DNp73alpha protects myogenic cells from apoptosis. Oncogene 25:3606–3612

    Article  PubMed  CAS  Google Scholar 

  46. Li CY, Zhu J, Wang JY (2005) Ectopic expression of p73alpha, but not p73beta, suppresses myogenic differentiation. J Biol Chem 280:2159–2164

    Article  PubMed  CAS  Google Scholar 

  47. Olson EN (1992) Interplay between proliferation and differentiation within the myogenic lineage. Dev Biol 154:261–272

    Article  PubMed  CAS  Google Scholar 

  48. Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K (1999) Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 19:5073–5082

    PubMed  CAS  Google Scholar 

  49. Lawlor MA, Rotwein P (2000) Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol Cell Biol 20:8983–8995

    Article  PubMed  CAS  Google Scholar 

  50. Martinez-Gac L, Alvarez B, Garcia Z, Marques M, Arrizabalaga M, Carrera AC (2004) Phosphoinositide 3-kinase and Forkhead, a switch for cell division. Biochem Soc Trans 32:360–361

    Article  PubMed  CAS  Google Scholar 

  51. Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622

    Article  PubMed  CAS  Google Scholar 

  52. Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM (2002) Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 277:36602–36610

    Article  PubMed  CAS  Google Scholar 

  53. Zhao R, Gish K, Murphy M et al (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981–993

    Article  PubMed  CAS  Google Scholar 

  54. Erlacher M, Labi V, Manzl C et al (2006) Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 203:2939–2951

    Article  PubMed  CAS  Google Scholar 

  55. Bauer A, Villunger A, Labi V et al (2006) The NF-kappaB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proc Natl Acad Sci U S A 103:10979–10984

    Article  PubMed  CAS  Google Scholar 

  56. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99:11025–11030

    Article  PubMed  CAS  Google Scholar 

  57. Jeffers JR, Parganas E, Lee Y et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328

    Article  PubMed  CAS  Google Scholar 

  58. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400

    Article  PubMed  CAS  Google Scholar 

  59. Bouchentouf M, Benabdallah BF, Tremblay JP (2004) Myoblast survival enhancement and transplantation success improvement by heat-shock treatment in mdx mice. Transplantation 77:1349–1356

    Article  PubMed  CAS  Google Scholar 

  60. Busquets S, Deans C, Figueras M et al (2007) Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr (e-pub) PMID: 1768894

  61. Adhihetty PJ, Taivassalo T, Haller RG, Walkinshaw DR, Hood DA (2007) The effect of training on the expression of mitochondrial biogenesis- and apoptosis-related proteins in skeletal muscle of patients with mtDNA defects. Am J Physiol Endocrinol Metab (e-pub) PMID: 17551003

  62. Mitch WE, Hu Z, Lee SW, Du J (2005) Strategies for suppressing muscle atrophy in chronic kidney disease: mechanisms activating distinct proteolytic systems. J Ren Nutr 15:23–27

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrei Gudkov (Lerner Research Institute, Cleveland Clinic) for generously providing constructs and assistance with the lenti-viral silencing. This work was supported by NIH grant RO1CA84212 awarded to C. M. Weyman. A. Shaltouki and M. Freer were each supported by a Molecular Medicine Fellowship and by the President’s Initiative Fund provided by Cleveland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal M. Weyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaltouki, A., Freer, M., Mei, Y. et al. Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation. Apoptosis 12, 2143–2154 (2007). https://doi.org/10.1007/s10495-007-0135-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0135-z

Keywords

Navigation