Skip to main content
Log in

Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Objective

Physical activity has been shown to improve cardiovascular function and to be beneficial to type 2 diabetic patients. However, the effects of aerobic exercise (AE) on myocardial ischemia/reperfusion (MI/R) are largely unclear. Therefore, the aims of the present study were to determine whether long-term AE can protect the heart against I/R injury, and if so, to investigate the underlying mechanism.

Methods

Adult male Sprague–Dawley rats were randomly subjected to 8 weeks of either sedentary or free-loading swimming exercise (3 h/day, 5 d/week). Then the animals were subjected to 30 min MI followed by 4 h R. Arterial blood pressure and left ventricular pressure (LVP) were monitored throughout the whole MI/R procedure. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) activities were measured spectrophotometrically. Myocardial infarction and myocardial apoptosis (TUNEL analysis) were determined in a blinded manner.

Results

MI/R caused significant cardiac dysfunction and myocardial apoptosis (strong TUNEL-positive staining). Compared with sedentary group, rats subjected to 8 weeks of AE showed protection against MI/R as evidenced by reduced myocardial infarction (26.8 ± 1.5% vs. 35.3 ± 2.4%, n = 8, P < 0.05), inhibited cardiomyocyte apoptosis (decreased apoptotic index (12.4 ± 1.1% vs. 21.0 ± 1.7%, n = 8, P < 0.01) and decreased myocardial caspase-3 activity), decreased plasma CK and LDH activities and improved recovery of cardiac systolic/diastolic function (including LVSP and ±LVdP/dt) at the end of R. Moreover, exercise resulted in 1.7-fold, 2.5-fold and 2.5-fold increases in Akt expression, Akt phosphorylation and glycogen synthase kinase-3β phosphorylation in I/R myocardium, respectively (n = 3, all P < 0.05). More importantly, treatment with wortmannin, a PI3 kinase inhibitor, 15 min before R not only significantly blocked Akt phosphorylation (P < 0.05) in exercise rats, but also abolished long-term AE-induced cardioprotection for the I/R heart as manifested by increased apoptosis and myocardial infarction, and reduced cardiac function.

Conclusion

Long-term AE exerts cardioprotective effect against MI/R injury, including anti-cardiomyocyte apoptosis, which is at least partly via PI3 kinase-dependent and Akt-mediated mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hull SS Jr, Vanoli E, Adamson PB, Verrier RL, Foreman RD, Schwartz PJ (1994) Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation 89:548–552

    PubMed  Google Scholar 

  2. Siscovick DS, Weiss NS, Fletcher RH, Lasky T (1984) The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med 311:874–877

    Article  PubMed  CAS  Google Scholar 

  3. Morris JN, Everitt MG, Pollard R, Chave SP, Semmence AM (1980) Vigorous exercise in leisure-time: protection against coronary heart disease. Lancet 2:1207–1210

    Article  PubMed  CAS  Google Scholar 

  4. Bowles DK, Farrar RP, Starnes JW (1992) Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol 263:H804-H809

    PubMed  CAS  Google Scholar 

  5. Bowles DK, Starnes JW (1994) Exercise training improves metabolic response after ischemia in isolated working rat heart. J Appl Physiol 76:1608–1614

    PubMed  CAS  Google Scholar 

  6. Libonati JR, Gaughan JP, Hefner CA, Gow A, Paolone AM, Houser SR (1997) Reduced ischemia and reperfusion injury following exercise training. Med Sci Sports Exerc 29:509–516

    PubMed  CAS  Google Scholar 

  7. Fuller EO, Nutter DO (1981) Endurance training in the rat. II. Performance of isolated and intact heart. J Appl Physiol 51:941–947

    PubMed  CAS  Google Scholar 

  8. Paulson DJ, Kopp SJ, Peace DG, Tow JP (1988) Improved postischemic recovery of cardiac pump function in exercised trained diabetic rats. J Appl Physiol 65:187–193

    PubMed  CAS  Google Scholar 

  9. Korge P, Mannik G (1990) The effect of regular physical exercise on sensitivity to ischaemia in the rat’s heart. Eur J Appl Physiol Occup Physiol 61:42–47

    Article  PubMed  CAS  Google Scholar 

  10. Matsui T, Tao J, del Monte F et al (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335

    PubMed  CAS  Google Scholar 

  11. Baines CP, Wang L, Cohen MV, Downey JM (1999) Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res Cardiol 94:188–198

    Article  PubMed  CAS  Google Scholar 

  12. Dudek H, Datta SR, Franke TF et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  PubMed  CAS  Google Scholar 

  13. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    PubMed  CAS  Google Scholar 

  14. Matsui T, Li L, del Monte F et al (1999) Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100:2373–2379

    PubMed  CAS  Google Scholar 

  15. Yin H, Chao L, Chao J (2005) Kallikrein/Kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-bad{middle dot}14-3-3 signaling pathways. J Biol Chem 280:8022–8030

    Article  PubMed  CAS  Google Scholar 

  16. Zhang HF, Fan Q, Qian XX et al (2004) Role of insulin in the anti-apoptotic effect of glucose-insulin-potassium in rabbits with acute myocardial ischemia and reperfusion. Apoptosis 9:777–783

    Article  PubMed  CAS  Google Scholar 

  17. Ma H, Zhang HF, Yu L et al (2006) Vasculoprotective effect of insulin in the ischemic/reperfused canine heart: role of Akt-stimulated NO production. Cardiovasc Res 69:57–65

    Article  PubMed  CAS  Google Scholar 

  18. Gao F, Gao E, Yue TL et al (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3 kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502

    Article  PubMed  CAS  Google Scholar 

  19. Turinsky J, mrau-Abney A (1999) Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: study with insulin and exercise. Am J Physiol Regul Integr Comp Physiol 276:R277–R282

    CAS  Google Scholar 

  20. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T (2006) Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol 291:H1290–H1298

    Article  PubMed  CAS  Google Scholar 

  21. Legare A, Drouin R, Milot M et al (2001) Increased density of glucagon receptors in liver from endurance-trained rats. Am J Physiol Endocrinol Metab 280:E193–E196

    PubMed  CAS  Google Scholar 

  22. Sun HY, Wang NP, Halkos M et al (2006) Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 11:1583–1593

    Article  PubMed  CAS  Google Scholar 

  23. Wang HC, Zhang HF, Guo WY et al (2006) Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis 11:1453–1460

    Article  PubMed  CAS  Google Scholar 

  24. Chen M, Won DJ, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277:29181–29186

    Article  PubMed  CAS  Google Scholar 

  25. Scarabelli T, Stephanou A, Rayment N et al (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256

    PubMed  CAS  Google Scholar 

  26. Ma XL, Kumar S, Gao F et al (1999) Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685–1691

    PubMed  CAS  Google Scholar 

  27. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  28. Belardinelli R, Georgiou D, Scocco V, Barstow TJ, Purcaro A (1995) Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol 26:975–982

    Article  PubMed  CAS  Google Scholar 

  29. Giannuzzi P, Tavazzi L, Temporelli PL et al (1993) Long-term physical training and left ventricular remodeling after anterior myocardial infarction: results of the exercise in anterior myocardial infarction (EAMI) trial. EAMI Study Group. J Am Coll Cardiol 22:1821–1829

    Article  PubMed  CAS  Google Scholar 

  30. Giannuzzi P, Temporelli PL, Corra U, Gattone M, Giordano A, Tavazzi L (1997) Attenuation of unfavorable remodeling by exercise training in postinfarction patients with left ventricular dysfunction: results of the exercise in left ventricular dysfunction (ELVD) trial. Circulation 96:1790–1797

    PubMed  CAS  Google Scholar 

  31. Hamilton KL, Powers SK, Sugiura T et al (2001) Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol 281:H1346–H1352

    PubMed  CAS  Google Scholar 

  32. Starnes JW, Taylor RP, Park Y (2003) Exercise improves postischemic function in aging hearts. Am J Physiol Heart Circ Physiol 285:H347–H351

    PubMed  CAS  Google Scholar 

  33. Kim YK, Kim SJ, Yatani A et al (2003) Mechanism of enhanced cardiac function in mice with hypertrophy induced by overexpressed Akt. J Biol Chem 278:47622–47628

    Article  PubMed  CAS  Google Scholar 

  34. Shaw M, Cohen P, Alessi DR (1998) The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J 336( Pt 1):241–246

    PubMed  CAS  Google Scholar 

  35. Ryder JW, Fahlman R, Wallberg-Henriksson H, Alessi DR, Krook A, Zierath JR (2000) Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement of the mitogen- and stress-activated protein kinase 1. J Biol Chem 275:1457–1462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Fund for Outstanding Young Investigators (No. 30625033) and grants from the National Natural Science Foundation of China (Nos. 30471923, 30500577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, KR., Liu, HT., Zhang, HF. et al. Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism. Apoptosis 12, 1579–1588 (2007). https://doi.org/10.1007/s10495-007-0090-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0090-8

Keywords

Navigation