Skip to main content
Log in

RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown MS, Goldstein JL (1980) Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 21:505–517

    PubMed  CAS  Google Scholar 

  2. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  3. Quesney-Huneeus V, Alack HA, Siperstein MD, et al (1983) The dual role of mevalonate in the cell cycle. J Biol Chem 258:378–385

    PubMed  CAS  Google Scholar 

  4. Habenicht AJR, Grommet JA, Ross R (1980) Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 255:5134–5140

    PubMed  CAS  Google Scholar 

  5. Fairbanks KP, Witte LD, Goodman DS (1984) Relationship between mevalonate and mitogenesis in human fibroblasts stimulated with platelet-derived growth factor. J Biol Chem 259:1546–1551

    PubMed  CAS  Google Scholar 

  6. Siperstein MD (1984) Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J Lipid Res 252:1462–1468

    Google Scholar 

  7. Cuts JL, Scalpel TJ, Wanton J, Bankhurst AD (1989) Role of mevalonic acid in the regulation of natural killer cell cytotoxicity. J Cell Physiol 139:550–557

    Article  Google Scholar 

  8. Garcia-Roman N, Alvarez AM, Toro MJ, Montes A, Lorenzo MJ (2001) Lovastatin induces apoptosis of spontaneously immortalized rat brain neuroblasts: Involvement of nonsterol isoprenoid biosynthesis inhibition. Mol Cell Neurosci 17:329–341

    Article  PubMed  CAS  Google Scholar 

  9. Padayatty SJ, Marcelli T, Shao TC, Cunningham GR (1997) Lovastatin-induced apoptosis in prostate stromal cells. J Clin Endocrinol Metab 82:1434–1439

    Article  PubMed  CAS  Google Scholar 

  10. Jones KD, Coulder WT, Hinton DR, et al (1994) Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun 205:1681–1687

    Article  PubMed  CAS  Google Scholar 

  11. Dimitroulakos J, Yeger H (1996) HMG-CoA reductase mediates the biological effects of retinoic acid on human neuroblastoma cells. Nat Med 2:326–333

    Article  PubMed  CAS  Google Scholar 

  12. Satoh T, Isobe H, Ayukawa K, Sakai H, Nawara H (1996) The effects of pravastatin, an HMG-CoA reductase inhibitor, on cell viability and DNA production of rat hepatocytes. Life Sci 59:1103–1108

    Article  PubMed  CAS  Google Scholar 

  13. Michikawa M, Yanagisawa K (1999) Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death. J Neurochem 72:2278–2285

    Article  PubMed  CAS  Google Scholar 

  14. Sponne I, Fifre A, Koziel V, Oster T, Olivier JL, Pillot T (2004) Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide. FASEB J 18:836–838

    PubMed  CAS  Google Scholar 

  15. Yang L, Sinensky MS (2000) 25-Hydroxycholesterol activates a cytochrome c release-mediated caspase cascade. Biochem Biophys Res Commun 278:557–563

    Article  PubMed  CAS  Google Scholar 

  16. Lim HK, Kang HK, Yoo ES, et al. (2003) Oxysterols induce apoptosis and accumulation of cell cycle at G(2)/M phase in the human monocytic THP-1 cell line. Life Sci 72:1389–1399

    Article  PubMed  CAS  Google Scholar 

  17. Rusinol AE, Thewke D, Liu J, Freeman N, Panini SR, Sinensky MS (2004) AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. J Biol Chem 279:1392–1399

    PubMed  Google Scholar 

  18. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  19. Chiloeches A, Usera F, Lasa M, Ropero S, Montes A, Toro MJ (1997) Effect of mevalonate availability on the association of G-protein alpha-subunits with the plasma membrane in GH4C1 cells. FEBS Lett 401:68–72

    Article  PubMed  CAS  Google Scholar 

  20. Ropero S, Chiloeches A, Montes A, Toro-Nozal MJ (2003) Cholesterol cell content modulates GTPase activity of G proteins in GH4C1 cell membranes. Cell Signal 15:131–138

    Article  PubMed  CAS  Google Scholar 

  21. Breusegem SY, Halaihel N, Inoue M, et al (2005) Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. Am J Physiol Renal Physiol 289:154–165

    Article  CAS  Google Scholar 

  22. Luegmayr E, Glantschnig H, Wesolowski GA, et al (2004) Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ 1:108–118

    Article  CAS  Google Scholar 

  23. Bang B, Gniadecki R, Gajkowska B (2005) Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Exp Dermatol 14:266–272

    Article  PubMed  CAS  Google Scholar 

  24. Griadecki R (2004) Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun 320:165–169

    Article  CAS  Google Scholar 

  25. Sarker KP, Maruyama I (2003) Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: Possible involvement of lipid rafts. Cell Mol Life Sci 60:1200–1208

    PubMed  CAS  Google Scholar 

  26. Biswas KK, Sarker KP, Abeyama K, et al (2003) Membrane cholesterol but not putative receptors mediates anandamide-induced hepatocyte apoptosis. Hepatology 38:1167–1177

    Article  PubMed  CAS  Google Scholar 

  27. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  28. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol Biol Rev 68:320–344

    Article  CAS  Google Scholar 

  29. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  30. Bar-Sagi D, Hall A (2000) Ras and Rho GTPases: A family reunion. Cell 103:227–238

    Article  PubMed  CAS  Google Scholar 

  31. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  32. Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    Article  PubMed  CAS  Google Scholar 

  33. Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10

    Article  PubMed  CAS  Google Scholar 

  34. Malliri A, Collard JG (2003) Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol 15:583–589

    Article  PubMed  CAS  Google Scholar 

  35. Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 91:143–150

    Article  PubMed  CAS  Google Scholar 

  36. Fessler MB, Arndt PG, Frasch SC, et al (2004) Lipid rafts regulates lipopolysaccharide-induced activation of Cdc42 and inflammatory functions of the human neutrophil. J Biol Chem 279:39989–39998

    Article  PubMed  CAS  Google Scholar 

  37. Senokuchi T, Matsumura T, Sakai M, et al (2005) Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway. J Biol Chem 280:6627–6633

    Article  PubMed  CAS  Google Scholar 

  38. Gingras D, Gauthier F, Lamy, S, Desrosiers RR, Beliveau R (1998) Localization of RhoA GTPase to endothelial caveolae-enriched membrane domains. Biochem Biophys Res Commun 247:888–893

    Article  PubMed  CAS  Google Scholar 

  39. Michaely PA, Mineo C, Ying YS, Anderson RG (1999) Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J Biol Chem 274:21430–21436

    Article  PubMed  CAS  Google Scholar 

  40. Utech M, Hobbel G, Rust S, Reinecke H, Assmann G, Walter M (2001) Accumulation of RhoA, RhoB, RhoG, and Rac1 in fibroblasts from Tangier disease subjects suggests a regulatory role of Rho family proteins in cholesterol efflux. Biochem Biophys Res Commun 280:229–236

    Article  PubMed  CAS  Google Scholar 

  41. Girao H, Pereira P, Ramalho J, Quinlan R, Prescott A (2003) Cholesterol oxides mediated changes in cytoskeletal organisation involves Rho GTPases. Exp Cell Res 291:502–513

    Article  PubMed  CAS  Google Scholar 

  42. Sanz-Moreno V, Casar B, Crespo P (2003) p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels. Mol Cell Biol 9:3079– 3090

    Article  CAS  Google Scholar 

  43. Rothblat GH, Bamberger M, Phillips MC (1986) Reverse cholesterol transport. Methods Enzymol 129:628–644

    Article  PubMed  CAS  Google Scholar 

  44. Gamble W, Vaughan M, Kruth HS, Avigan J (1978) Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res 19:1068–1070

    PubMed  CAS  Google Scholar 

  45. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    Article  PubMed  CAS  Google Scholar 

  46. Galaria II, Fegley AJ, Nicholl SM, Roztocil E, Davies MG (2004) Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration. J Surg Res 122:173–179

    Article  PubMed  CAS  Google Scholar 

  47. Yamauchi J, Tsujimoto G, Kaziro Y, Itoh H (2001) Parallel regulation of mitogen-activated protein kinase kinase 3 (MKK3) and MKK6 in Gq-signaling cascade. J Biol Chem 276:23362–23372

    Article  PubMed  CAS  Google Scholar 

  48. Landis MS, Patel HV, Capone JP (2002) Oxysterol activators of liver X receptor and 9-cis-retinoic acid promote sequential steps in the synthesis and secretion of tumor necrosis factor-a from human monocytes. J Biol Chem 277:4713–4721

    Article  PubMed  CAS  Google Scholar 

  49. Maxwell KN, Soccio RE, Duncan EM, Sehayek E, Breslow JL (2003) Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res 44:2109–2119

    Article  PubMed  CAS  Google Scholar 

  50. Kawabe J, Okumura S, Lee MC, Sadoshima J, Ishikawa Y (2004) Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286:1845–1852

    Article  Google Scholar 

  51. Kabouridis PS, Janzen J, Magee AL, Ley SC (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol 30:954–963

    Article  PubMed  CAS  Google Scholar 

  52. Furuchi T, Anderson RG (1998) Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J Biol Chem 273:21099–21104

    Article  PubMed  CAS  Google Scholar 

  53. Ares MP, Porn-Ares MI, Moses S, Nilsson J, et al (2000) 7beta-hydroxycholesterol induces Ca(2+) oscillations, MAP kinase activation and apoptosis in human aortic smooth muscle cells. Atherosclerosis 153:23–35

    Article  PubMed  CAS  Google Scholar 

  54. Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ (2004) Oxysterols induce cyclooxygenase-2 expression in cholangiocytes:implications for biliary tract carcinogenesis. Hepatology 39:732–738

    Article  PubMed  CAS  Google Scholar 

  55. Jans R, Atanasova G, Jadot M, Poumay Y (2004) Cholesterol depletion upregulates involucrin expression in epidermal keratinocytes through activation of p38. J Invest Dermatol 123:564–573

    Article  PubMed  CAS  Google Scholar 

  56. Bulavin DV, Saito S, Hollander MC, et al (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  57. Ono K, Han J (2000) The p38 signal transduction pathway: Activation and function. Cell Signalling 12:1–13

    Article  PubMed  CAS  Google Scholar 

  58. Marinissen MJ, Chiariello M, Gutkind JS (2001) Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 15:535–553

    Article  PubMed  CAS  Google Scholar 

  59. Wang J, Fan J, Laschinger C, Arora PD, Kapus A, Seth A, McCulloch CA (2005) Smooth muscle actin determines mechanical force-induced p38 activation. J Biol Chem 280:7273–7284

    Article  PubMed  CAS  Google Scholar 

  60. Agarwal B, Halmos B, Feoktistov AS, et al (2002) Mechanism of lovastatin-induced apoptosis in intestinal epithelial cells. Carcinogenesis 23:521–528

    Article  PubMed  CAS  Google Scholar 

  61. Kaneta S, Satoh K (2003) All hydrophobic HMG-CoA reductase inhibitors induce apoptotic death in rat pulmonary vein endothelial cells. Atherosclerosis 170:237–243

    Article  PubMed  CAS  Google Scholar 

  62. Rombouts K, Kisanga E, Hellemans K, Wielant A, Schuppan D, Geerts A (2003) Effect of HMG-CoA reductase inhibitors on proliferation and protein synthesis by rat hepatic stellate cells. J Hepatol 38:564–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Chiloeches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleros, L., Lasa, M., Rodríguez-Álvarez, F.J. et al. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion. Apoptosis 11, 1161–1173 (2006). https://doi.org/10.1007/s10495-006-6980-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-6980-3

Keywords

Navigation