Skip to main content

Advertisement

Log in

Lymph node cells from BALB/c mice with chronic visceral leishmaniasis exhibiting cellular anergy and apoptosis: Involvement of Ser/Thr phosphatase

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Visceral leishmaniasis (VL) produced in BALB/c mice through intracardial administration of Leishmania donovani amastigotes was accompanied by hepatosplenomegaly with high organ parasite load and lymphadenopathy when followed up to 4-months or so. To elucidate the mechanism of immunosuppression associated with VL, we report here progressive impairment of the proliferative response of lymph node cells (lymphocytes) from infected animals (I-LNC) to in vitro stimulation with the combination of phorbol 12-myristate 13-acetate (PMA) and ionomycin (Io) that could be related to the downregulation of PKC and MAP kinase (ERK 1/2) activation process. Further, pretreatment of I-LNC with the protein phosphatase inhibitor okadaic acid (OA), but not with calyculin A or sodium orthovanadate, significantly restored their proliferative response as well as PMA-induced activation of PKC. A population of LNC (primarily T-lymphocytes) from chronically infected animals was shown to undergo apoptosis, the number of which increased considerably following PMA+ Io stimulation. The apoptotic pathway, which was followed through binding of cells to Annexin V, activation of caspase-3 and fragmentation of DNA, involved destabilization of mitochondria, probably as a result of downregulation of PKC and Bcl-2. Interestingly, prior incubation of I-LNC with OA reversed the state of cell cycle arrest (anergy) and apoptosis through progression of cells from G0/G1 to S and G2/M phases with transcriptional activation of IL-2 and IL-2R genes. Our results suggest that the cellular (immune) dysfunction in VL could be attributed to dephosphorylation of key molecules in the T-lymphocyte signaling pathway by Ser/Thr phosphatase leading to their inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryceson ADM (1996) Leishmaniasis. In: Cook GC (ed). Manson's tropical diseases. W.B. Saunders, London, pp 1213–1245

    Google Scholar 

  2. Sacks DL, Louis JA, Wirth DF (1993) Leishmaniasis. In: Warren KS (ed). Immunology and molecular biology of parasitic infection. Blackwell, New York, pp 237–268

    Google Scholar 

  3. Wilson ME, Jeronimo SMB, Pearson RD (2005) Immunopathogenesis of infection with the visceralising Leishmania species. Microb Pathog 38:147–160

    Article  PubMed  CAS  Google Scholar 

  4. Bogdan C, Rollinghöff M (1998) The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 28:121–134

    Article  PubMed  CAS  Google Scholar 

  5. Kaye PM, Gorak P, Murphy M, Ross S (1995) Strategies for immune intervention in visceral leishmaniasis. Ann Trop Med Parasitol 89:75–81

    PubMed  Google Scholar 

  6. Kaye PM, Rogers NJ, Curry AJ, Scott JC (1994) Deficient expression of co-stimulatory molecules on Leishmania-infected macrophages. Eur J Immunol 24:2850–2854

    PubMed  CAS  Google Scholar 

  7. Murray HW, Lu CM, Brooks EB, Fichtl RE, DeVecchio JL, Heinzel FP (2003) Modulation of T-cell costimulation as immunotherapy or immunochemotherapy in experimental visceral leishmaniasis. Infect Immun 71:6453–6462

    Article  PubMed  CAS  Google Scholar 

  8. Mookerjee A, Sen PC, Ghose AC (2003) Immunosuppression in hamsters with progressive visceral leishmaniasis is associated with an impairment of protein kinase C activity in their lymphocytes that can be partially reversed by okadaic acid or anti-transforming growth factor β antibody. Infect Immun 71:2439–2446

    Article  PubMed  CAS  Google Scholar 

  9. Rodrigues V, Santana-da-Silva J, Campos-Neto A (1998) Transforming growth factor β and immunosuppression in experimental visceral leishmaniasis. Infect Immun 66:1233–1236

    PubMed  CAS  Google Scholar 

  10. Sacks D, Anderson CF (2004) Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 201:225–238

    Article  PubMed  CAS  Google Scholar 

  11. Carvalho EM, Bacellar O, Barral A, Badaro R, Johnson Jr WD (1989) Antigen-specific immunosuppression in visceral leishmaniasis is cell mediated. J Clin Invest 83:860–864

    PubMed  CAS  Google Scholar 

  12. Halder JP, Ghose SK, Saha C, Ghose AC (1983) Cell-mediated immune response in Indian kala-azar and post-kala-azar dermal leishmaniasis. Infect Immun 42:702–707

    Google Scholar 

  13. Ho M, Koech DK, Iha DH, Bryceson ADM (1983) Immunosuppression in Kenyan visceral leishmaniasis. Clin Exp Immunol 51:207–214

    PubMed  CAS  Google Scholar 

  14. Altman A, Coggeshall KN, Mustelin T (1990) Molecular events mediating T cell activation. Adv Immunol 48:227–360

    PubMed  CAS  Google Scholar 

  15. Truneh A, Albert F, Golstein P, Schmitt-Verhulst AM (1985) Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol esters. Nature 313:318–320

    Article  PubMed  CAS  Google Scholar 

  16. Engwerda CR, Kaye PM (2000) Organ-specific immune responses associated with infectious diseases. Immunol Today 21:73–78

    Article  PubMed  CAS  Google Scholar 

  17. Dereure J, Duong Thanh H, Lavabre-Bertrand T, Cartron G, Bastides F, Richard-Lenoble D, Dedet JP (2003) Visceral leishmaniasis. Persistence of parasites in lymph nodes after clinical cure. Infect Immun 47:77–81

    CAS  Google Scholar 

  18. Nandy A, Chowdhury AB (1988) Lymphatic leishmaniasis in India. Trans R Soc Trop Med Hyg 82:411

    Article  PubMed  CAS  Google Scholar 

  19. Veress B, Omer A, Satir AA, el-Hassan AM (1977) Morphology of the spleen and lymph nodes in fatal visceral leishmaniasis. Immunology 33:607–610

    Google Scholar 

  20. Ahmed S, Colmenares M, Soong L et al (2003) Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun 71:401–410

    Article  PubMed  CAS  Google Scholar 

  21. Lima WG, Michalick MS, de Melo MN, Luiz TW (2004) Canine visceral leishmaniasis: a histopathological studies of lymph nodes. Acta Trop 92:33–53

    Google Scholar 

  22. von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343:1020–1034

    Article  PubMed  CAS  Google Scholar 

  23. Sacks D, Melby PC (1999) Animal Models for the Analysis of Immune Responses to Leishmaniasis. In: Coligan J, Kruisbeck A, Margulies D, Shevach E, Strober W (eds.). Current protocols in immunology, Wiley, p 19.2.1

  24. Murray HW, Masur H, Keithly JS (1982) Cell-mediated immune response in experimental visceral leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine-generating capacity. J Immunol 129:344–350

    PubMed  CAS  Google Scholar 

  25. Nickol AD, Bonventre PF (1985) Visceral leishmaniasis in congenic mice of susceptible and resistant phenotypes: immunosuppression by adherent spleen cells. Infect Immun 50:160–168

    PubMed  CAS  Google Scholar 

  26. Smelt SC, Engwerda CR, McCrossen M, Kaye PM (1997) Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol 158:3813–3821

    PubMed  CAS  Google Scholar 

  27. Wilson ME, Sandor M, Blum AM et al (1996) Local suppression of IFN-gamma in hepatic granulomas correlates with tissue-specific replication of Leishmania chagasi. J Immunol 156:2231–2239

    PubMed  CAS  Google Scholar 

  28. Mukherjee P, Ghosh AK, Ghose AC (2003) Infection pattern and immune response in the spleen and liver of BALB/c mice intracardially infected with Leishmania donovani amastigotes. Immunol Lett 86:131–138

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh AK, Dasgupta S, Ghose AC (1995) Immunoglobulin G subclass-specific antileishmanial antibody responses in Indian kala-azar and post-kala-azar dermal leishmaniasis. Clin Diagn Lab Immunol 2:291–296

    PubMed  CAS  Google Scholar 

  30. Kim HP, Kelly J, Leonard WJ (2001) The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 15:159–172

    Article  PubMed  CAS  Google Scholar 

  31. Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishizuka Y (1983) Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 258:11442–11445

    PubMed  CAS  Google Scholar 

  32. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  PubMed  CAS  Google Scholar 

  33. Wilson ME, Innes DJ, Sousa AD, Pearson RD (1987) Early histopathology of experimental infection with Leishmania donovani in hamsters. J Parasitol 73:55–63

    Article  PubMed  CAS  Google Scholar 

  34. Melby PC, Yang YZ, Cheng J, Zhao W (1998) Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani. Infect Immun 66:18–27

    PubMed  CAS  Google Scholar 

  35. Corbett CE, Paes RA, Laurenti MD, Andrade Junior HF, Duarte MI (1992) Histopathology of lymphoid organs in experimental leishmaniasis. Int J Exp Pathol 73:417–433

    PubMed  CAS  Google Scholar 

  36. Mukherjee P (2005) Immunobiological studies on visceral leishmaniasis in BALB/c nice intracardially infected with Leishmania donovani amastigotes. Ph.D. Thesis. Calcutta University, Kolkata (India)

  37. Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK 1. Science 281:2042–2045

    Article  PubMed  Google Scholar 

  38. Toker A, Newton AC (2000) Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275:8271–8274

    Article  PubMed  CAS  Google Scholar 

  39. Ng T, Squire A, Hansra G et al (1999) Imaging protein kinase C α activation in cells. Science 283:2085–2089

    Article  PubMed  CAS  Google Scholar 

  40. Cohen P, Klumpp S, Schelling DL (1989) An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250:596–600

    Article  PubMed  CAS  Google Scholar 

  41. Ishihara H, Martin BL, Brautigan DL et al (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159:871–877

    Article  PubMed  CAS  Google Scholar 

  42. Ricciarelli R, Azzi A (1998) Regulation of recombinant PKC alpha activity by protein phosphatase 1 and protein phosphatase 2A. Arch Biochem Biophys 355:197–200

    Article  PubMed  CAS  Google Scholar 

  43. Kracht M, Heiner A, Resch K, Szamel M (1993) Interleukin-1-induced signaling in T-cells. Evidence for the involvement of phosphatases PP1 and PP2A in regulating protein kinase C-mediated protein phosphorylation and interleukin-2 synthesis. J Biol Chem 268:21066–21072

    PubMed  CAS  Google Scholar 

  44. Kobayashi H, Suzuki M, Tanaka Y, Hirashima Y, Terao T (2001) Suppression of urokinase expression and invasiveness by urinary trypsin inhibitor is mediated through inhibition of protein kinase C- and MEK/ERK/c-Jun-dependent signaling pathways. J Biol Chem 276:2015–2022

    Article  PubMed  CAS  Google Scholar 

  45. Alessi DR, Gomez N, Moorhead G, Lewis T, Keyse SM, Cohen P (1995) Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol 5:283–295

    Article  PubMed  CAS  Google Scholar 

  46. Coleman ML, Marshall CJ, Olson MF (2004) RAS and RHO GTPases in G1-phase cell-cycle regulation. Mol Cell Biol 5:355–366

    CAS  Google Scholar 

  47. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  PubMed  CAS  Google Scholar 

  48. Nelson BH, Willerford DM (1998) Biology of the interleukin-2 receptor. Adv Immunol 70:1–81

    Article  PubMed  CAS  Google Scholar 

  49. Smith KA (2004) The quantal theory of how the immune system discriminates between “self and non-self”. Med Immunol 3:3

    Article  PubMed  CAS  Google Scholar 

  50. Budd RC (2001) Activation-induced cell death. Curr Opin Immunol 13:356–362

    Article  PubMed  CAS  Google Scholar 

  51. Gavrilescu CL, Denkers EY (2003) Apoptosis and the balance of homeostatic and pathologic responses to protozoan infection. Infect Immun 71:6109–6115

    Article  PubMed  CAS  Google Scholar 

  52. Potestio M, D’Agostino P, Romano GC et al (2004) CD4+CCR5+ and CD4+CCR3+ lymphocyte subset and monocyte apoptosis in patients with acute visceral leishmaniasis. Immunology 113:260–268

    Article  PubMed  CAS  Google Scholar 

  53. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  54. Acconero P, Raddizzani M, Care A et al (1998) HIV/gp120 and PMA/ionomycin induced apoptosis but not activation induced cell death require PKC for Fas-L upregulation. FEBS Lett 436:461–465

    Article  Google Scholar 

  55. Deng X, Kornblau SM, Ruvolo PP, May Jr WS (2000) Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. J Natl Cancer Inst Monograph 28:30–37

    CAS  Google Scholar 

  56. Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92:4507–4511

    Article  PubMed  CAS  Google Scholar 

  57. Mookerjee A (2004) Molecular and cellular mechanism of immunosuppression associated with visceral leishmaniasis ib golden hamsters (Mesocricetus auratus) experimentally infected with Leishmania donovani. Ph.D. Thesis, Jadavpur University, Kolkata (India)

  58. Ogasawara H, Tomioka T, Shimizu T, Sano C, Kawauchi H, Sato K. Profiles of cell-to-cell interaction of Mycobacterium intracellulare-induced immunosuppressive macrophages with target T cells in terms of suppressor signal transmission. Clin Exp Immunol 129:272–280

  59. Berndt N (2003) Roles and regulation of serine/threonine-specific protein phosphatases in the cell cycle. Prog Cell Cycle Res 5:497–510

    PubMed  Google Scholar 

  60. McCluskey A, Sim AT, Sakoff JA (2002) Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 45:1151–1175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke C. Ghose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, P., Sen, P.C. & Ghose, A.C. Lymph node cells from BALB/c mice with chronic visceral leishmaniasis exhibiting cellular anergy and apoptosis: Involvement of Ser/Thr phosphatase. Apoptosis 11, 2013–2029 (2006). https://doi.org/10.1007/s10495-006-0088-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0088-7

Keywords

Navigation