Skip to main content
Log in

Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

By transfection of Coxsackievirus B3 (CVB3) individual protease gene into HeLa cells, we demonstrated that 2Apro and 3Cpro induced apoptosis through multiple converging pathways. Firstly, both 2Apro and 3Cpro induced caspase-8-mediated activation of caspase-3 and dramatically reduced cell viability. Secondly, they both activated the intrinsic mitochondria-mediated apoptosis pathway leading to cytochrome c release from mitochondria and activation of caspase-9. However, 3Cpro induced these events via both up-regulation of Bax and cleavage of Bid, and 2Apro induced these events via cleavage of Bid only. Nevertheless, neither altered Bcl-2 expression. Thirdly, both proteases induced cell death through cleavage or down regulation of cellular factors for translation and transcription: both 2Apro and 3Cpro cleaved eukaryotic translation initiation factor 4GI but their cleavage products are different, indicating different cleavage sites; further, both 2Apro and 3Cpro down-regulated cyclic AMP responsive element binding protein, a transcription factor, with 2Apro exhibiting a stronger effect than 3Cpro. Surprisingly, neither could cleave DAP5/p97/NAT1, a translation regulator, although this cleavage was observed during CVB3 infection and could not be blocked by caspase inhibitor z-VAD-fmk. Taken together, these data suggest that 2Apro and 3Cpro induce apoptosis through both activation of proapoptotic mediators and suppression of translation and transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hosenpud JD, Novick RJ, Breen TJ, Daily OP (1994) The registry of the international society for heart and lung transplantation: eleventh official report–1994. J Heart Lung Transplant 13:561–570

    PubMed  CAS  Google Scholar 

  2. D’Ambrosio A, Patti G, Manzoli A et al (2001) The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart 85:499–504

    Article  PubMed  CAS  Google Scholar 

  3. Bovee ML, Marissen WE, Zamora M, Lloyd RE (1998) The predominant elF4G-specific cleavage activity in poliovirus-infected HeLa cells is distinct from 2A protease. Virology 245:229–240

    Article  PubMed  CAS  Google Scholar 

  4. Goldstaub D, Gradi A, Bercovitch Z et al (2000) Poliovirus 2A protease induces apoptotic cell death. Mol Cell Biol 20: 1271–1277

    Article  PubMed  CAS  Google Scholar 

  5. Sommergruber W, Ahorn H, Klump H et al (1994) 2A proteinases of coxsackie- and rhinovirus cleave peptides derived from eIF-4 gamma via a common recognition motif. Virology 198:741–745

    Article  PubMed  CAS  Google Scholar 

  6. Badorff C, Lee GH, Lamphear BJ et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5:320–326

    Article  PubMed  CAS  Google Scholar 

  7. Baxter NJ, Roetzer A, Liebig HD et al (2006) Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. J Virol 80:1451–1462

    Article  PubMed  CAS  Google Scholar 

  8. Seipelt J, Liebig HD, Sommergruber W, Gerner C, Kuechler E (2000) 2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J Biol Chem 275:20084–20089

    Article  PubMed  CAS  Google Scholar 

  9. Tolskaya EA, Romanova LI, Kolesnikova MS et al (1995) Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J Virol 69:1181–1189

    PubMed  CAS  Google Scholar 

  10. Novoa I, Carrasco L (1999) Cleavage of eukaryotic translation initiation factor 4G by exogenously added hybrid proteins containing poliovirus 2Apro in HeLa cells: effects on gene expression. Mol Cell Biol 19:2445–2454

    PubMed  CAS  Google Scholar 

  11. Gradi A, Imataka H, Svitkin YV et al (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18:334–342

    PubMed  CAS  Google Scholar 

  12. Barco A, Feduchi E, Carrasco L (2000) A stable HeLa cell line that inducibly expresses poliovirus 2A(pro): effects on cellular and viral gene expression. J Virol 74:2383–2392

    Article  PubMed  CAS  Google Scholar 

  13. Joachims M, Van Breugel PC, Lloyd RE (1999) Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73:718–727

    PubMed  CAS  Google Scholar 

  14. Badorff C, Lee GH, Knowlton KU (2000) Enteroviral cardiomyopathy: bad news for the dystrophin-glycoprotein complex. Herz 25:227–232

    Article  PubMed  CAS  Google Scholar 

  15. Clark ME, Lieberman PM, Berk AJ, Dasgupta A (1993) Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol Cell Biol 13:1232–1237

    PubMed  CAS  Google Scholar 

  16. Clark ME, Hammerle T, Wimmer E, Dasgupta A (1991) Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J 10:2941–2947

    PubMed  CAS  Google Scholar 

  17. Yalamanchili P, Weidman K, Dasgupta A (1997) Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239:176–185

    Article  PubMed  CAS  Google Scholar 

  18. Shiroki K, Isoyama T, Kuge S et al (1999) Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-mediated cleavage. J Virol 73:2193–2200

    PubMed  CAS  Google Scholar 

  19. Back SH, Kim YK, Kim WJ et al (2002) Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol 76:2529–2542

    Article  PubMed  CAS  Google Scholar 

  20. Jaattela M, Tschopp J (2003) Caspase-independent cell death in T lymphocytes. Nat Immunol 4:416–423

    Article  PubMed  CAS  Google Scholar 

  21. Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407:777–783

    Article  PubMed  CAS  Google Scholar 

  22. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801

    Article  PubMed  CAS  Google Scholar 

  23. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570

    PubMed  CAS  Google Scholar 

  24. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107:489–506

    Article  PubMed  CAS  Google Scholar 

  25. Marash L, Kimchi A (2005) DAP5 and IRES-mediated translation during programmed cell death. Cell Death Differ 12:554–562

    Article  PubMed  CAS  Google Scholar 

  26. Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17:3261–3270

    Article  PubMed  Google Scholar 

  27. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  28. Carthy CM, Granville DJ, Watson KA et al (1998) Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. J Virol 72:7669–7675

    PubMed  CAS  Google Scholar 

  29. Barco A, Feduchi E, Carrasco L (2000) Poliovirus protease 3C(pro) kills cells by apoptosis. Virology 266:352–360

    Article  PubMed  CAS  Google Scholar 

  30. Martin U, Nestler M, Munder T, Zell R, Sigusch HH, Henke A (2004) Characterization of coxsackievirus B3-caused apoptosis under in vitro conditions. Med Microbiol Immunol (Berl) 193:133–139

    Article  CAS  Google Scholar 

  31. Henke A, Launhardt H, Klement K, Stelzner A, Zell R, Munder T (2000) Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J Virol 74:4284–4290

    Article  PubMed  CAS  Google Scholar 

  32. Zhang HM, Yanagawa B, Cheung P et al (2002) Nip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway. Circ Res 90:1251–1258

    Article  PubMed  CAS  Google Scholar 

  33. Klump WM, Bergmann I, Muller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583

    PubMed  CAS  Google Scholar 

  34. Zhang HM, Yuan J, Cheung P et al (2005) Gamma interferon-inducible protein 10 induces HeLa cell apoptosis through a p53-dependent pathway initiated by suppression of human papillomavirus type 18 E6 and E7 expression. Mol Cell Biol 25:6247–6258

    Article  PubMed  CAS  Google Scholar 

  35. Zhang HM, Yuan J, Cheung P et al (2003) Overexpression of interferon-gamma-inducible GTPase inhibits coxsackievirus B3-induced apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway and inhibition of viral replication. J Biol Chem 278:33011–33019

    Article  PubMed  CAS  Google Scholar 

  36. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  37. Eskes R, Antonsson B, Osen-Sand A et al (1998) Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217–224

    Article  PubMed  CAS  Google Scholar 

  38. Levy-Strumpf N, Deiss LP, Berissi H, Kimchi A (1997) DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol Cell Biol 17:1615–1625

    PubMed  CAS  Google Scholar 

  39. Yamanaka S, Poksay KS, Arnold KS, Innerarity TL (1997) A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 11:321–333

    PubMed  CAS  Google Scholar 

  40. Imataka H, Olsen HS, Sonenberg N (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J 16:817–825

    Article  PubMed  CAS  Google Scholar 

  41. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    Article  PubMed  CAS  Google Scholar 

  42. Kuo RL, Kung SH, Hsu YY, Liu WT (2002) Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol 83:1367–1376

    PubMed  CAS  Google Scholar 

  43. Li ML, Hsu TA, Chen TC et al (2002) The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 293:386–395

    Article  PubMed  CAS  Google Scholar 

  44. Gonzalvez F, Pariselli F, Dupaigne P et al (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12:614–626

    Article  PubMed  CAS  Google Scholar 

  45. Calandria C, Irurzun A, Barco A, Carrasco L (2004) Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Res 104:39–49

    Article  PubMed  CAS  Google Scholar 

  46. Wu X, Deng Y (2002) Bax and BH3-domain-only proteins in p53-mediated apoptosis. Front Biosci 7:d151–d156

    PubMed  CAS  Google Scholar 

  47. Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  PubMed  CAS  Google Scholar 

  48. Clemens MJ, Bushell M, Morley SJ (1998) Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene 17:2921–2931

    Article  PubMed  CAS  Google Scholar 

  49. Strong R, Belsham GJ (2004) Sequential modification of translation initiation factor eIF4GI by two different foot-and-mouth disease virus proteases within infected baby hamster kidney cells: identification of the 3Cpro cleavage site. J Gen Virol 85:2953–2962

    Article  PubMed  CAS  Google Scholar 

  50. Shaughnessy JD Jr, Jenkins NA, Copeland NG (1997) cDNA cloning, expression analysis, and chromosomal localization of a gene with high homology to wheat eIF-(iso)4F and mammalian eIF-4G. Genomics 39:192–197

    Article  PubMed  CAS  Google Scholar 

  51. Henis-Korenblit S, Strumpf NL, Goldstaub D, Kimchi A (2000) A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 20:496–506

    Article  PubMed  CAS  Google Scholar 

  52. Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G, Kimchi A (2002) The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc Natl Acad Sci USA 99:5400–5405

    Article  PubMed  CAS  Google Scholar 

  53. Nevins TA, Harder ZM, Korneluk RG, Holcik M (2003) Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 278:3572–3579

    Article  PubMed  CAS  Google Scholar 

  54. Hundsdoerfer P, Thoma C, Hentze MW (2005) Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation. Proc Natl Acad Sci USA 102:13421–13426

    Article  PubMed  CAS  Google Scholar 

  55. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    Article  PubMed  CAS  Google Scholar 

  56. Perianayagam MC, Madias NE, Pereira BJ, Jaber BL (2006) CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. Eur J Clin Invest 36:353–361

    Article  PubMed  CAS  Google Scholar 

  57. Leiden JM (1997) The genetics of dilated cardiomyopathy–emerging clues to the puzzle. N Engl J Med 337:1080–1081

    Article  PubMed  CAS  Google Scholar 

  58. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM (1998) Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest 101:2415–2426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Reinhard Kandolf, University of Tübingen, Germany for providing us the CVB3 cDNA. We also thank Dr. Bruce McManus for his critical discussion on experimental design. Special thanks go to Elizabeth Walker, Zongshu Luo and Jingchun Zhang for their technical assistance. This work was supported by grants from the Canadian Institutes of Health Research and the Heart and Stroke Foundation of BC and Yukon. Ji Yuan is supported by a Doctoral Research Award from the Michael Smith Foundation of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decheng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, D.H.W., Yuan, J., Zhang, H. et al. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 12, 513–524 (2007). https://doi.org/10.1007/s10495-006-0013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0013-0

Keywords

Navigation