Skip to main content
Log in

Ornithine decarboxylase prevents tumor necrosis factor alpha-induced apoptosis by decreasing intracellular reactive oxygen species

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ornithine decarboxylase (ODC) plays an essential role in various biological functions, including cell proliferation, differentiation and cell death. However, how it prevents the cell apoptotic mechanism is still unclear. Previous studies have demonstrated that decreasing the activity of ODC by difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, causes the accumulation of intracellular reactive oxygen species (ROS) and cell arrest, thus inducing cell death. These findings might indicate how ODC exerts anti-oxidative and anti-apoptotic effects. In our study, tumor necrosis factor alpha (TNF-α) induced apoptosis in HL-60 and Jurkat T cells. The kinetic studies revealed that the TNF-α -induced apoptotic process included intracellular ROS generation (as early as 1 h after treatment), the activation of caspase 8 (3 h), the cleavage of Bid (3 h) and the disruption of mitochondrial membrane potential (Δ ψ m ) (6 h). Furthermore, ROS scavengers, such as glutathione (GSH) and catalase, maintained Δ ψ m and prevented apoptosis upon treatment. Putrescine and overexpression of ODC had similar effects as ROS scavengers in decreasing intracellular ROS and preventing the disruption of Δ ψ m and apoptosis. Inhibition of ODC by DFMO in HL-60 cells only could increase ROS generation, but did not disrupt Δ ψ m or induce apoptosis. However, DFMO enhanced the accumulation of ROS, disruption of Δ ψ m and apoptosis when cells were treated with TNF-α . ODC overexpression avoided the decline of Bcl-2, prevented cytochrome c release from mitochondria and inhibited the activation of caspase 8, 9 and 3. Overexpression of Bcl-2 maintained Δ ψ m and prevented apoptosis, but could not reduce ROS until four hours after TNF-α treatment. According to these data, we suggest that TNF-α induces apoptosis mainly by a ROS-dependent, mitochondria-mediated pathway. Furthermore, ODC prevents TNF-α -induced apoptosis by decreasing intracellular ROS to avoid Bcl-2 decline, maintain Δ ψ m , prevent cytochrome c release and deactivate the caspase cascade pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabor CW, Tabor H. Polyamines. Annu Rev Biochem 1984; 53: 749–790.

    Article  CAS  PubMed  Google Scholar 

  2. Pendeville H, Carpino N, Marine JC, et al. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 2001; 21: 6549–6558.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas T, Thomas TJ. Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001; 58: 244–258.

    CAS  PubMed  Google Scholar 

  4. Smith MK, Goral MA, Wright JH, et al. Ornithine decarboxylase overexpression leads to increased epithelial tumor invasiveness. Cancer Res 1997; 57: 2104–2108.

    CAS  PubMed  Google Scholar 

  5. O’Brien TG, Megosh LC, Gilliard G, Soler AP. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 1997; 57: 2630–2637.

    CAS  PubMed  Google Scholar 

  6. Auvinen M, Paasinen A, Andersson LC, Holtta E. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992; 36: 355–358.

    Article  Google Scholar 

  7. O’Brien TG, Simsiman RC, Boutwell RK. Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res 1975; 35: 1662–1670.

    CAS  PubMed  Google Scholar 

  8. Thomas T, Kiang DT. Additive growth-inhibitory effects of DL-alpha-difluoromethylornithine and antiestrogens on MCF-7 breast cancer cell line. Biochem Biophys Res Commun 1987; 148: 1338–1345.

    Article  CAS  PubMed  Google Scholar 

  9. Pegg AE, McGovern KA, Wiest L. Decarboxylation of alpha-difluoromethylornithine by ornithine decarboxylase. Biochem J 1987; 241: 305–307.

    CAS  PubMed  Google Scholar 

  10. Moshier JA, Dosescu J, Skunca M, Luk GD. Transformation of NIH/3T3 cells by ornithine decarboxylase overexpression. Cancer Res 1993; 53: 2618–2622.

    CAS  PubMed  Google Scholar 

  11. Auvinen M, Laine A, Paasinen-Sohns A, et al. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res 1997; 57: 3016–3025.

    CAS  PubMed  Google Scholar 

  12. Packham G, Cleveland JL. Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Mol Cell Biol 1994; 14: 5741–5747.

    CAS  PubMed  Google Scholar 

  13. Ploszaj T, Motyl T, Zimowska W, Skierski J, Zwierzchowski L. Inhibition of ornithine decarboxylase by alpha-difluoromethylornithine induces apoptosis of HC11 mouse mammary epithelial cells. Amino Acids 2000; 19: 483–496.

    Article  CAS  PubMed  Google Scholar 

  14. Park JK, Chung YM, Kang S, et al. c-Myc exerts a protective function through ornithine decarboxylase against cellular insults. Mol Pharmacol 2002; 62: 1400–1408.

    Article  CAS  PubMed  Google Scholar 

  15. Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol 1982; 243: C212–C221.

    CAS  PubMed  Google Scholar 

  16. Douki T, Bretonniere Y, Cadet J. Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res 2000; 153: 29–35.

    CAS  PubMed  Google Scholar 

  17. Brune B, Hartzell P, Nicotera P, Orrenius S. Spermine prevents endonuclease activation and apoptosis in thymocytes. Exp Cell Res 1991; 195: 323–329.

    Article  CAS  PubMed  Google Scholar 

  18. Ha HC, Yager JD, Woster PA, Casero RA. Jr. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem Biophys Res Commun 1998; 244: 298–303.

    Article  CAS  PubMed  Google Scholar 

  19. Nitta T, Igarashi K, Yamamoto N. Polyamine depletion induces apoptosis through mitochondria-mediated pathway. Exp Cell Res 2002; 276: 120–128.

    Article  CAS  PubMed  Google Scholar 

  20. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992; 13: 151–153.

    CAS  PubMed  Google Scholar 

  21. Rothe J, Gehr G, Loetscher H, Lesslauer W. Tumor necrosis factor receptors–structure and function. Immunol Res 1992; 11: 81–90.

    CAS  PubMed  Google Scholar 

  22. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87: 565–576.

    PubMed  Google Scholar 

  23. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL. TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 1998; 17: 1639–1651.

    Article  CAS  PubMed  Google Scholar 

  24. Liu GY, Chen KJ, Lin-Shiau SY, Lin JK. Peroxyacetyl nitrate-induced apoptosis through generation of reactive oxygen species in HL-60 cells. Mol Carcinog 1999; 25: 196–206.

    Article  CAS  PubMed  Google Scholar 

  25. Kao MC, Liu GY, Chuang TC, Lin YS, Wuu JA, Law SL. The N-terminal 178-amino-acid domain only of the SV40 large T antigen acts as a transforming suppressor of the HER-2/neu oncogene. Oncogene 1998; 16: 547–554.

    Article  CAS  PubMed  Google Scholar 

  26. Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 1985; 82: 488–492.

    CAS  PubMed  Google Scholar 

  27. Wang Y, Bachrach U. A luminescence-based test for determining ornithine decarboxylase activity. Anal Biochem 2000; 287: 299–302.

    Article  CAS  PubMed  Google Scholar 

  28. Amer J, Goldfarb A, Fibach E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol 2003; 70: 84–90.

    Article  CAS  PubMed  Google Scholar 

  29. Carter WO, Narayanan PK, Robinson JP. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 1994; 55: 253–258.

    CAS  PubMed  Google Scholar 

  30. Juan G, Cavazzoni M, Saez GT, O’Connor JE. A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry 1994; 15: 335–342.

    CAS  PubMed  Google Scholar 

  31. Davis S, Weiss MJ, Wong JR, Lampidis TJ, Chen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 1985; 260: 13844–13850.

    CAS  PubMed  Google Scholar 

  32. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 2000; 60: 3807–3812.

    CAS  PubMed  Google Scholar 

  33. Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    CAS  PubMed  Google Scholar 

  34. Chuang TC, Yu YH, Lin YS, Wang SS, Kao MC. The N-terminal domain of SV40 large T antigen represses the HER2/neu-mediated transformation and metastatic potential in breast cancers. FEBS Lett 2002; 511: 46–50.

    Article  CAS  PubMed  Google Scholar 

  35. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    CAS  PubMed  Google Scholar 

  36. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 1992; 267: 5317–5323.

    CAS  PubMed  Google Scholar 

  37. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190.

    Article  CAS  PubMed  Google Scholar 

  38. Miura M, Friedlander RM, Yuan J. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc Natl Acad Sci USA 1995; 92: 8318– 8322.

    CAS  PubMed  Google Scholar 

  39. Liu CY, Takemasa A, Liles WC, et al. Broad-spectrum caspase inhibition paradoxically augments cell death in TNF-alpha -stimulated neutrophils. Blood 2003; 101: 295– 304.

    Article  CAS  PubMed  Google Scholar 

  40. Maianski NA, Roos D, Kuijpers TW. Tumor necrosis factor alpha induces a caspase-independent death pathway in human neutrophils. Blood 2003; 101: 1987–1995.

    Article  CAS  PubMed  Google Scholar 

  41. Ricci JE, Munoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004; 117: 773–786.

    Article  CAS  PubMed  Google Scholar 

  42. Poulaki V, Mitsiades N, Romero ME, Tsokos M. Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2. Cancer Res 2001; 61: 4864–4872.

    CAS  PubMed  Google Scholar 

  43. Zhang B, Hirahashi J, Cullere X, Mayadas TN. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: Cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem 2003; 278: 28443–28454.

    CAS  PubMed  Google Scholar 

  44. Takahashi Y, Mai M, Nishioka K. Alpha-difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int J Cancer 2000; 85: 243–247.

    Article  CAS  PubMed  Google Scholar 

  45. Endo Y, Matsushima K, Onozaki K, Oppenheim JJ. Role of ornithine decarboxylase in the regulation of cell growth by IL-1 and tumor necrosis factor. J Immunol 1988; 141: 2342–2348.

    CAS  PubMed  Google Scholar 

  46. Donato NJ, Rotbein J, Rosenblum MG. Tumor necrosis factor stimulates ornithine decarboxylase activity in human fibroblasts and tumor target cells. J Cell Biochem 1991; 46: 69–77.

    CAS  PubMed  Google Scholar 

  47. Nitobe J, Yamaguchi S, Okuyama M, et al. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 2003; 57: 119–128.

    Article  CAS  PubMed  Google Scholar 

  48. Lin Y, Choksi S, Shen HM, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 2004; 279: 10822–10828.

    Article  CAS  PubMed  Google Scholar 

  49. Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P. Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci USA 2003; 100: 15035–15040.

    Article  CAS  PubMed  Google Scholar 

  50. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA. Jr. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 1998; 95: 11140–11145.

    Article  CAS  PubMed  Google Scholar 

  51. Morgan DM. Polyamines. An overview. Mol Biotechnol 1999; 11: 229–250.

    CAS  PubMed  Google Scholar 

  52. Yamakura T, Shimoji K. Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 1999; 59: 279–298.

    CAS  PubMed  Google Scholar 

  53. Thomas T, Kiang DT. Structural alterations and stabilization of rabbit uterine estrogen receptors by natural polyamines. Cancer Res 1987; 47: 1799–1804.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G.-Y. Liu or H.-C. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, GY., Hung, YC., Hsu, PC. et al. Ornithine decarboxylase prevents tumor necrosis factor alpha-induced apoptosis by decreasing intracellular reactive oxygen species. Apoptosis 10, 569–581 (2005). https://doi.org/10.1007/s10495-005-1891-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-1891-2

Keywords

Navigation