Skip to main content
Log in

Large Eddy Simulation of Pre-Chamber Ignition in an Internal Combustion Engine

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Using homogeneous lean mixtures is an efficient way to reduce fuel consumption and pollutant emissions in internal combustion engines. However, lean combustion requires breakthrough technologies to induce reliable ignition and fast combustion. One of these technologies uses pre-chamber to create multiple hot turbulent jets and provide ignition sites for the lean mixture. In this paper, the behaviour of a pre-chamber ignition system used to ignite the main chamber of a real engine is studied using large eddy simulation with direct integration of analytically reduced chemistry using the dynamic thickened flame model. The large eddy simulation allows to analyze the flow entering and leaving the pre-chamber, to measure the cooling and quenching effects introduced by the hot gas passages through the ducts connecting pre- and main chambers and to analyze the ignition and combustion sequences. For the case studied here, small amount of flame kernels are exhausted from the pre-chamber. Hot products penetrate the main chamber, disperse and mix with the fresh reactants and lead to ignition. The combustion in the main chamber starts in a distributed reaction mode before reaching a flamelet propagation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www-hpc.cea.fr/en/complexe/tgcc-Irene.htm

References

  1. Dunn-Rankin, D., Therkelsen, P. (eds.): Lean Combustion - Technology and Control, 2nd edn. Academic Press, Cambridge (2016)

  2. Li, H., Karim, G.A., Sohrabi, A.: The lean mixture operational limits of a spark ignition engine when operated on fuel mixtures. J. Eng. Gas Turb. Power 131 (1), 012801–7 (2009)

    Article  Google Scholar 

  3. Quader, A.A.: What limits lean operation in spark ignition engines-flame initiation or propagation? SAE Technical Paper (1976)

  4. Attard, W.P., Toulson, E., Huisjen, A., Chen, X., Zhu, G., Schock, H.: Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization SAE Technical Paper (2012)

  5. Filho, F.A.R., Baêta, J.G.C., Teixeira, A.F., Valle, R.M., de Souza, J.L.F.: E25 stratified torch ignition engine emissions and combustion analysis. Energy Convers. Manag. 121, 251–271 (2016)

    Article  Google Scholar 

  6. Filho, F.A.R., Teixeira, A.F., Rodrigues da Costa, R.B., Baêta, J. G. C., Valle, R.M.: Stratified Torch Ignition Engine: Performance Analysis. SAE Technical Paper (2016)

  7. Jamrozik, A.: Lean combustion by a pre-chamber charge stratification in a stationary spark ignited engine. J. Mech. Sci. Technol. 29(5), 2269–2278 (2015)

    Article  Google Scholar 

  8. Roethlisberger, R.P., Favrat, D.: Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, part I: Engine geometrical parameters. Appl. Therm. Eng. 22, 1217–1229 (2002)

    Article  Google Scholar 

  9. Biswas, S., Tanvir, S., Wang, H., Qiao, L.: On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106, 925–937 (2016)

    Article  Google Scholar 

  10. Yamaguchi, S., Ohiwa, N., Hasegawa, T.: Ignition and burning process in a divided chamber bomb. Combust. Flame 59, 177–187 (1985)

    Article  Google Scholar 

  11. Fei, Q., Shah, A., Zhi-wei, H., Li-na, P., Tunestal, P., Xue-Song, B.: Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines. Combust. Flame 188, 357–366 (2018)

    Article  Google Scholar 

  12. Allison, P.M., de Oliveira, M., Giusti, A., Mastorakos, E.: Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 230, 274–281 (2018)

    Article  Google Scholar 

  13. Felden, A., Esclapez, L., Riber, E., Cuenot, B., Wang, H.: Including real fuel chemistry in LES of turbulent spray combustion. Combust. Flame 193, 397–416 (2018)

    Article  Google Scholar 

  14. Felden, A., Riber, E., Cuenot, B.: Impact of direct integration of analytically reduced chemistry in LES of a sooting swirled non-premixed combustor. Combust. Flame 191, 270–286 (2018)

    Article  Google Scholar 

  15. Pepiot, P.: Automatic Strategies to Model Transportation Fuel Surrogates. Ph.D. thesis, Stanford University (2008)

  16. Jaravel, T., Riber, E., Cuenot, B., Bulat, G.: Large Eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction. Proc. Combust. Inst. 36(3), 1–9 (2016)

    Google Scholar 

  17. Rochette, B., Collin-Bastiani, F., Gicquel, L., Vermorel, O., Veynante, D., Poinsot, T.: Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames. Combust. Flame 191, 417–430 (2018)

    Article  Google Scholar 

  18. Petrova, M.V., Williams, F.A.: A small detailed chemical-kinetic mechanism for hydrocarbon combustion. Combust. Flame 144(3), 526–544 (2006)

    Article  Google Scholar 

  19. Prince, J.C., Williams, F.A.: Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane. Combust. Flame 159(7), 2336–2344 (2012)

    Article  Google Scholar 

  20. Saxena, P., Williams, F.A.: Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame 145(1-2), 316–323 (2006)

    Article  Google Scholar 

  21. Ghani, A., Poinsot, T., Gicquel, L., Staffelbach, G.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162(11), 4075–4083 (2015)

    Article  Google Scholar 

  22. Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large Eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)

    Article  Google Scholar 

  23. Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141, 40–54 (2005)

    Article  Google Scholar 

  24. Quillatre, P., Vermorel, O., Poinsot, T., Ricoux, P.: Large Eddy simulation of vented deflagration. Indus. Eng. Chem. Res. 52(33), 11414–11423 (2013)

    Article  Google Scholar 

  25. Vermorel, O., Quillatre, P., Poinsot, T.: LES of explosions in venting chamber: A test case for premixed turbulent combustion models. Combust. Flame 183, 207–223 (2017)

    Article  Google Scholar 

  26. Enaux, B., Granet, V., Vermorel, O., Lacour, C., Pera, C., Angelberger, C., Poinsot, T.: LES study of cycle-to-cycle variations in a spark ignition engine. Proc. Combust. Inst. 33(2), 3115–3122 (2011)

    Article  Google Scholar 

  27. Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., Poinsot, T.: Large-Eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combust. Flame 159(4), 1562–1575 (2012)

    Article  Google Scholar 

  28. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  29. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131(1–2), 159–180 (2002)

    Article  Google Scholar 

  30. Bilger, R.W.: The structure of turbulent nonpremixed flames. Symp. (Int.) Combust. 22(1), 475–488 (1989)

    Article  Google Scholar 

  31. Misdariis, A.: Schémas cinétiques réduits et couplage thermique pour les simulation aux grandes échelles du cliquetis dans les moteurs à piston. Ph.D. thesis Institut National Polytechnique de Toulouse (2015)

  32. Gicquel, L.Y.M., Gourdain, N., Boussuge, J.F., Deniau, H., Staffelbach, G., Wolf, P., Poinsot, T.: High performance parallel computing of flows in complex geometries. Comptes Rendus Mecanique 339(2-3), 104–124 (2011)

    Article  MATH  Google Scholar 

  33. Schonfeld, T., Rudgyard, M.: Steady and unsteady flow simulations using the hybrid flow solver AVBP. AIAA J. 37(11), 1378–1385 (1999)

    Article  Google Scholar 

  34. Colin, O., Rudgyard, M.: Development of high-order Taylor-Galerkin schemes for LES. J. Comput. Phys. 162(2), 338–371 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., Mayer, M.G.: Molecular Theory of Gases and Liquids, vol. 26. Wiley, New York (1954)

    MATH  Google Scholar 

  36. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turb. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

  37. Lacaze, G., Richardson, E., Poinsot, T.: Large Eddy simulation of spark ignition in a turbulent methane jet. Combust. Flame 156(10), 1993–2009 (2009)

    Article  Google Scholar 

  38. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 135, 203–216 (1997)

    Article  MATH  Google Scholar 

  39. Moureau, V.: Simulation aux grandes échelles de l’aérodynamique interne des moteurs à piston. Ph.D. thesis, Ecole Centrale Paris (2004)

  40. Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202(2), 710–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)

    Article  MATH  Google Scholar 

  43. Lumley, J.L.: Engines: An Introduction. Cambridge University Press (1999)

Download references

Acknowledgements

This work was granted access to the high performance computing resources of “Très Grand Centre de calcul du Commissariat à l’énergie atomique et aux énergies alternatives” under the “Grand Challenge” allocation number gch0301 attributed by “Grand Équipement National de Calcul Intensif”.

Funding

Quentin Malé is the recipient of a “Conventions Industrielles de Formation par la Recherche” Ph.D. research fellowship number 2017/0295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Malé.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malé, Q., Staffelbach, G., Vermorel, O. et al. Large Eddy Simulation of Pre-Chamber Ignition in an Internal Combustion Engine. Flow Turbulence Combust 103, 465–483 (2019). https://doi.org/10.1007/s10494-019-00026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00026-y

Keywords

Navigation