Skip to main content
Log in

Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A stochastic implementation of the Multiple Mapping Conditioning (MMC) approach has been applied to a turbulent piloted jet diffusion flame (Sandia flame F) that is close to extinction. Two classic mixing models (Curl’s and IEM) are introduced in the MMC context to model the turbulent mixing. The suggested model involves the use of a reference space (that is mapped to mixture fraction space) in order to define particle proximity. The addition of the MMC ideas to the IEM and Curl’s models, that is suggested in the current work, aspires to combine the simplicity of these two models with the enforced compositional locality without violating the linearity and independence principles. The formulation of the approach is discussed in detail and results are presented for the mixing field and reactive species. The predictions are compared with joint-scalar PDF simulations using the same mixing models and experimental data. Moreover, the sensitivity of the model to the particle number is examined. It is shown that MMC is less sensitive to the number of particles and can generally produce improved predictions of major and minor chemically reacting species with a lower number of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust Inst 27, 1087–1095 (1998)

    Article  Google Scholar 

  2. Barlow, R., Frank, J., Karpetis, A., Chen, J.Y.: Piloted methane/air jet flames: Transport effects and aspects of scalar structure. Combust. Flame 143, 433–449 (2005)

    Article  Google Scholar 

  3. Cao, R., Pope, S.: The influence of chemical mechanisms on pdf calculations of nonpremixed piloted jet flames. Combust. Flame 143, 450–470 (2005)

    Article  Google Scholar 

  4. Cao, R., Wang, H., Pope, S.: The effect of mixing models in pdf calculations of piloted jet flames. Proc. Combust Inst 31, 15431550 (2007)

    Article  Google Scholar 

  5. Chen, H., Chen, S., Kraichnan, R.: Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63(24), 2657–60 (1989)

    Article  Google Scholar 

  6. Sung, C.J., Law, C., Chen, J.: Augmented reduced mechanisms for no emission in methane oxidation. Combust. Flame 125(1–2), 906–919 (2001)

    Article  Google Scholar 

  7. Cleary, M., Kronenburg, A.: Hybrid multiple mapping conditioning on passive and reactive scalars. Combust. Flame 151(4), 623–638 (2007)

    Article  Google Scholar 

  8. Corrsin, S.: J. Aeronaut. Sci. 18, 417 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  9. Curl, R., Miller, R., Ralph, J., Towell, G.: Dispersed phase mixing: Ii. measurements in organic dispersed systems. AIChE J. 9, 175–181 (1963)

    Article  Google Scholar 

  10. Dopazo, C.: Probability density function approach for a turbulent heated jet. centerline evolution. Phys. Fluids 18, 397–404 (1975)

    Article  MATH  Google Scholar 

  11. Gardiner, C.: Handbook of stochastic methods. Springer, New York (1984)

    Google Scholar 

  12. Ge, Y., Cleary, M., Klimenko, A.: Sparse-lagrangian {FDF} simulations of sandia flame e with density coupling. Proc. Combust. Inst. 33(1), 1401–1409 (2011)

    Article  Google Scholar 

  13. Ge, Y., Cleary, M., Klimenko, A.: A comparative study of sandia flame series (df) using sparse-lagrangian {MMC} modelling. Proc. Combust. Inst. 34(1), 1325–1332 (2013)

    Article  Google Scholar 

  14. Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168259 (2010)

    Article  Google Scholar 

  15. He, G.W., Zhang, Z.F.: Two-point closure strategy in the mapping closure approximation approach. Phys. Rev. E 70(036), 309 (2004)

    Google Scholar 

  16. Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Nonequil. Thermodyn 4, 47–66 (1979)

    Article  MATH  Google Scholar 

  17. Klimenko, A.: Modern modelling of turbulent non-premixed combustion and reaction of pollution emission. Proceedings of Clean Air VII, Lisbon, Portugal (2003)

  18. Klimenko, A: Matching the conditional variance as a criterion for selecting parameters in the simplest multiple mapping conditioning models. Phys. Fluids 16(12), 4754–4757 (2004)

    Article  Google Scholar 

  19. Klimenko, A.: On simulating scalar transport by mixing between lagrangian particles. Phys. Fluids 19(3), 31,702 (2007)

    Article  Google Scholar 

  20. Klimenko, A., Bilger, R.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci 25(6), 595–687 (1999)

    Article  Google Scholar 

  21. Klimenko, A., Pope, S.: The modeling of turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 15(7), 1907–1925 (2003)

    Article  MathSciNet  Google Scholar 

  22. Kronenburg, A., Cleary, M.J.: Multiple mapping conditioning for flames with partial premixing. Combust. Flame 155, 215–231 (2008)

    Article  Google Scholar 

  23. Launder, B., Spalding, D.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)

    Article  MATH  Google Scholar 

  24. Lindstedt, R., Louloudi, S., Vaos, E.M.: Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proc. Combust Inst 28(1), 149156 (2000)

    Article  Google Scholar 

  25. Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the pdf equations of turbulent reactive flows. J. Comp. Phys. 154, 342371 (1999)

    Article  MathSciNet  Google Scholar 

  26. Norris, A., Pope, S.: Turbulent mixing model based on ordering pairing. Combust. Flame 83(1–2), 27–42 (1991)

    Article  Google Scholar 

  27. Pope, S.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)

    Article  Google Scholar 

  28. Pope, S.: Mapping closures for turbulent mixing and reaction. Theor. Comput. Fluid Dyn 2(5–6), 255–70 (1991)

    Article  MATH  Google Scholar 

  29. Pope, S.B.: A model for turbulent mixing based on shadow-position conditioning. Phys. Fluids 25(11) (2013)

  30. Raman, V., Pitsch, H.: A consistent les/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc Combust Inst 31, 1711–1719 (2007)

    Article  Google Scholar 

  31. Subramaniam, S., Pope, S.: A mixing model for turbulent reactive flows based on euclidean minimum spanning trees. Combust. Flame 115(4), 487–514 (1999)

    Article  Google Scholar 

  32. Vogiatzaki, K., Cleary, M., Kronenburg, A., Kent, J.: Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning. Phys. Fluids 21(2) (2009)

  33. Vogiatzaki, K., Kronenburg, A., Navarro-Martinez, S., Jones, W.: Stochastic multiple mapping conditioning for a piloted, turbulent jet diffusion flame. Proc. Combust Inst 33(1), 1523–1531 (2011)

    Article  Google Scholar 

  34. Wandel, A., Klimenko, A.: Testing multiple mapping conditioning mixing for monte carlo probability density function simulations. Phys. Fluids 17(12), 128,105 (2005)

    Article  Google Scholar 

  35. Wandel, A.P., Lindstedt, R.P.: Hybrid multiple mapping conditioning modeling of local extinction. Proc. Combust. Inst. 34(1), 1365–1372 (2013)

    Article  Google Scholar 

  36. Xu, J., Pope, S.B.: Pdf calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vogiatzaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogiatzaki, K., Navarro-Martinez, S., De, S. et al. Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction. Flow Turbulence Combust 95, 501–517 (2015). https://doi.org/10.1007/s10494-015-9626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9626-0

Keywords

Navigation