Skip to main content
Log in

The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breuer, M., Rodi, W.: Large eddy simulation for complex flow of practical interest. In: Hirschel, E.H. (ed.): Flow simulation with high-performance computers II, Notes on Numerical Fluid Mechanics, vol. 52. Vieweg Verlag, Braunschweig (1996)

  2. Cho, N.H., Liu, X., Rodi, W.: Calculation of wake-induced unsteady flow in a turbine cascade. ASME Paper 92-GT-306 (1992)

  3. Coull, J., Hodson, H.: Unsteady boundary-layer transition in low-pressure turbines. J. Fluid Mech. 681, 370–410 (2011)

    Article  MATH  Google Scholar 

  4. Durbin, P.A., Wu, X.: Transition beneath vortical disturbances. Ann. Rev. Fluid Mech. 39, 107–128 (2007)

    Article  MathSciNet  Google Scholar 

  5. Hack, M.J.P., Zaki, T.A.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)

    Article  MathSciNet  Google Scholar 

  6. Hilgenfeld, L., Pfitzner, M.: Unsteady boundary layer development due to wake-passing effects on a highly loaded linear compressor cascade. J. Turbomach. 126, 493–500 (2004)

    Article  Google Scholar 

  7. Jacobs, R.G., Durbin, P.A.: Simulations of bypass transition. J. Fluid Mech. 428, 185–212 (2001)

    Article  MATH  Google Scholar 

  8. Kalitzin, G., Wu, X., Durbin, P.: DNS of fully turbulent flow in a LPT passage. Int. J. Heat Fluid Flow 24, 636–644 (2003)

    Article  Google Scholar 

  9. Mayle, R.E.: The role of laminar-turbulent transition in gas turbine engines. ASME Paper 91-GT-261 (1991)

  10. Michelassi, V., Martelli, F., Dénos, T., Arts, T., Sieverding, C.: Unsteady heat transfer in stator-rotor interaction by two-equation turbulence model. ASME. J. Turbomach. 121, 436–447 (1999)

    Article  Google Scholar 

  11. Nagarajan, S., Lele, S., Ferziger, J.: Leading edge effects in bypass transition. J. Fluid Mech. (2007)

  12. Nolan, K.P., Zaki, T.A.: Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306–339 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA. J. 21(11), 1525–1532 (1983)

    Article  MATH  Google Scholar 

  14. Stadtmüller, P., Fottner, L.: A test case for the numerical investigation of wake-passing effects of a highly-loaded lp turbine cascade blade. ASME paper 2001-GT-311 (2001)

  15. Stieger, R., Hodson, H.: Convection of a turbulent bar wake through a low-pressure turbine cascade. ASME J. Turbomach. 127, 388–394 (2005)

    Article  Google Scholar 

  16. Stone, H.: Iterative solutions of implicit approximations of multidimensional partial differential equations. SIAM J. Nunerical Anal. 5, 87–113 (1968)

    Google Scholar 

  17. Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)

    Article  MATH  Google Scholar 

  18. Wissink, J.: DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. Int. J. Heat Fluid Flow 24, 626–635 (2003)

    Article  Google Scholar 

  19. Wissink, J., Rodi, W.: Numerical study of the near wake of a circular cylinder. Int. J. Heat Fluid Flow 29, 1060–1070 (2008)

    Article  Google Scholar 

  20. Wissink, J., Rodi,W., Hodson, H.: The influence of disturbances carried by periodically incoming wakes on the separating flow around a turbine blade. Int. J. Heat Fluid Flow 27, 721–729 (2006)

    Article  Google Scholar 

  21. Wu, X., Durbin, P.A.: Existence of longitudinal vortices evolved from distorted wakes in a turbine passage. J. Fluid Mech. 446, 199–228 (2001)

    MATH  Google Scholar 

  22. Zaki, T., Wissink, J., Durbin, P., Rodi, W.: Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech. 665, 57–98 (2010)

    Article  MATH  Google Scholar 

  23. Zaki, T.A.: From streaks to spots and on to turbulence: Exploring the dynamics of boundary layer transition. Flow, Turbul. Combust. 91, 451–473 (2013)

    Article  Google Scholar 

  24. Zaki, T.A., Durbin, P.A.:Mode interaction and the bypass route to transition. J. FluidMech. 531, 85–111 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zaki, T.A., Durbin, P.A.: Continuous mode transition and the effects of pressure gradient. J. FluidMech. 563, 357–388 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zaki, T.A., Saha, S.: On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111–147 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zaki, T.A., Wissink, J.G., Durbin, P.A., Rodi, W.: Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade. Flow, Turbul. Combust. 83(3), 307–322 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan G. Wissink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wissink, J.G., Zaki, T.A., Rodi, W. et al. The Effect of wake Turbulence Intensity on Transition in a Compressor Cascade. Flow Turbulence Combust 93, 555–576 (2014). https://doi.org/10.1007/s10494-014-9559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9559-z

Keywords

Navigation