Skip to main content
Log in

Review of Experimental Data on Incompressible Turbulent Round Jets

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This article reviews measurements for the canonical flow: incompressible turbulent round jets issuing into a large, ideally infinite, quiescent domain. The available far-field data on mean velocity, momentum-flux conservation, Reynolds stresses and triple fluctuation correlations are presented. The budget equations for turbulent kinetic energy and for the individual Reynolds stresses are shown, including different formulations for dissipation and pressure-velocity correlations. Evidence of the persistence of source conditions in the self-preserving far field is observed in several cases. This article analyses and compares several data sets, obtained at different levels of detail, against analytical constraints, discusses limitations and provides insights aided by reference to recent numerical work. It is hoped that this will prove useful in guiding future experiments and numerical test cases, where complete details of the jet configuration are required for validation and comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGARD: Advisory Group for Aerospace Research & Development: A selection of test cases for the validation of large-eddy simulations of turbulent flows. Advisory Report No. 345. North Atlantic Treaty Organization, Neuilly-Sur-Seine, France (1998)

  2. Antonia, R.A., Satyaprakash, B.R., Hussain, A.K.M.F.: Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23(4), 695–700 (1980)

    Article  Google Scholar 

  3. Boersma, B.J., Brethouwer, G., Nieuwstadt, F.T.M.: A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10(4), 899–909 (1998)

    Article  Google Scholar 

  4. Bogey, C., Bailly, C.: Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J. Fluid Mech. 627, 129–160 (2009)

    Article  MATH  Google Scholar 

  5. Burattini, P., Antonia, R.A., Danaila, L.: Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101-1 (2005)

    Google Scholar 

  6. Chen, C.J., Rodi, W.: Vertical Turbulent Buoyant Jets: A Review of Experimental Data. Pergamon Press, Oxford and New York (1980)

    Google Scholar 

  7. Ferrand, V., Bazile, R., Borée, J., Charnay, G.: Gas-droplet velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets. Int. J. Multiph. Flow 29, 195–217 (2003)

    Article  MATH  Google Scholar 

  8. Fellouah, H., Ball, C.G., Pollard, A.: Reynolds number effects within the development region of a turbulent round jet. Int. J. Heat Mass Transfer 52, 3943–3954 (2009)

    Article  Google Scholar 

  9. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H.: Mixing in Inland and Coastal Waters. Academic Press, San Diego (USA) (1979)

    Google Scholar 

  10. George, W.K.: Is there a universal log law for turbulent wall-bounded flows? Phil. Trans. R. Soc. A 365, 789806 (2007)

    Article  Google Scholar 

  11. George, W.K.: Is there an asymptotic effect of initial and upstream conditions on turbulence? In: Proceedings of the ASME 2008 Fluids Engineering Meeting: 2008 Freeman Lecture, Jacksonville, Florida, USA, 10–14 August 2008

  12. George, W.K.: The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In: George, W.K., Arndt, R. (eds.) Advances in Turbulence, pp. 39–73. Hemisphere (1989)

  13. George, W.K., Davidson, L.: Role of initial conditions in establishing asymptoting flow behaviour. AIAA J. 42(3), 438–446 (2004)

    Article  Google Scholar 

  14. Grinstein, F.F.: On integrating large eddy simulation and laboratory turbulent flow experiments. Phil. Trans. R. Soc. A 367, 2831–2945 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hussain, A.K.M.F., Zedan, M.F.: Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 21(7), 1100–1112 (1978)

    Article  Google Scholar 

  16. Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994)

    Article  Google Scholar 

  17. Kim, J., Choi, H.: Large eddy simulation of a circular jet: effect of inflow conditions on the near field. J. Fluid Mech. 620, 383–411 (2009)

    Article  MATH  Google Scholar 

  18. List, E.J.: Turbulent jets and plumes. Annu. Rev. Fluid Mech. 14, 189–212 (1982)

    Article  Google Scholar 

  19. Mi, J., Nobes, D.S., Nathan, G.J.: Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91–125 (2001)

    MATH  Google Scholar 

  20. Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jet of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197–223 (1993)

    Article  Google Scholar 

  21. Papanicolaou, P.N., List, E.J.: Investigation of round vertical turbulent buoyant jet. J. Fluid Mech. 195, 341–391 (1988)

    Article  Google Scholar 

  22. Picano, F.: Dynamics of turbulent axisymmetric jets. Ph.D. thesis, Università degli studi “La Sapienza”, Rome (2007)

  23. Picano, F., Casciola, C.M.: Small-scale anisotropy and universality of axisymmetric jets. Phys. Fluids 19, 118106 (2007)

    Article  Google Scholar 

  24. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  25. Rodi, W.: A review of experimental data of uniform density free turbulent boundary layers. In: Launder, B.E. (ed.) Studies in Convection. Academic (1975)

  26. Shiri A, George WK, Naughton JW. Experimental study of the far field of incompressible swirling jets. AIAA J. 46(8), 2002–2009 (2008)

    Article  Google Scholar 

  27. Taulbee, D.B., Hussein, H., Capp, S.: The round jet: experiment and inferences on turbulence modelling. In: Proc. 6th Symp. Turbulent Shear Flow., Toulouse (FR), 10 5 1–6 (1987)

  28. Wang, H., Law, A.W.: Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397–428 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Wang, Z., He, P., Lv, Y., Zhou, J., Fan, J., Cen, K.: Direct numerical simulation of subsonic round turbulent jet. Flow Turbul. Combust. 84, 669–686 (2010)

    Article  MATH  Google Scholar 

  30. Webster, D.R., Roberts, P.J.W., Ra’ad, L.: Simultaneous DPTV/PLIF measurements of a turbulent jet. Exp. Fluids 30(1), 65–72 (2001)

    Article  Google Scholar 

  31. Weisgraber, T.H., Liepmann, D.: Turbulent structure during transition to self-similarity in a round jet. Exp. Fluids 24, 210–224 (1998)

    Article  Google Scholar 

  32. Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38(3), 577–612 (1969)

    Article  Google Scholar 

  33. Xu, G., Antonia, R.: Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33(5), 677–683 (2002)

    Google Scholar 

  34. Ying, C., Davidson, M.J., Wang, H.W., Law, A.W.K.: Radial velocities in axisymmetric jets and plumes. J. Hydraul. Res. 42(1), 29–33 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giordano Lipari.

Additional information

This paper was stimulated by the research project Modelling Studies of Sediment Deposition from Wastewater Discharges in the Marine Environment (‘Sedjet’, 2003-06) supported by the Engineering and Physical Science Research Council (UK) with grant GR/S25128/01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipari, G., Stansby, P.K. Review of Experimental Data on Incompressible Turbulent Round Jets. Flow Turbulence Combust 87, 79–114 (2011). https://doi.org/10.1007/s10494-011-9330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9330-7

Keywords

Navigation