Skip to main content
Log in

Large-Eddy Simulation of Lean Premixed Turbulent Flames of Three Different Combustion Configurations using a Novel Reaction Closure

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This large eddy simulation (LES) study is applied to three different premixed turbulent flames under lean conditions at atmospheric pressure. The hierarchy of complexity of these flames in ascending order are a simple Bunsen-like burner, a sudden-expansion dump combustor, and a typical swirl-stabilized gas turbine burner–combustor. The purpose of this paper is to examine numerically whether the chosen combination of the Smagorinsky turbulence model for sgs fluxes and a novel turbulent premixed reaction closure is applicable over all the three combustion configurations with varied degree of flow and turbulence. A quality assessment method for the LES calculations is applied. The cold flow data obtained with the Smagorinsky closure on the dump combustor are in close proximity with the experiments. It moderately predicts the vortex breakdown and bubble shape, which control the flame position on the double-cone burner. Here, the jet break-up at the root of the burner is premature and differs with the experiments by as much as half the burner exit diameter, attributing the discrepancy to poor grid resolution. With the first two combustion configurations, the applied subgrid reaction model is in good correspondence with the experiments. For the third case, a complex swirl-stabilized burner–combustor configuration, although the flow field inside the burner is only modestly numerically explored, the level of flame stabilization at the junction of the burner–combustor has been rather well captured. Furthermore, the critical flame drift from the combustor into the burner was possible to capture in the LES context (which was not possible with the RANS plus kɛ model), however, requiring tuning of a prefactor in the reaction closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breuer, M.: Int. J. Heat Fluid Flow. 19, 512–521 (1998)

    Article  Google Scholar 

  2. Menon, S., Chakravarthy, V. K.: AIAA, vol. 96-3077. Lake Buena Vista, FL (1996)

  3. Menon, S., Kim, W.-W.: AIAA. vol. 96-0425. Reno, NV (1996)

  4. Andersson, N., Eriksson, L.-E., Davidson, L.: 11th AIAA/CEAS Aeroacoustics Conference, vol. 2005-2925. Monterey, CA (2005).

  5. Boger, M., Veynante, D., Boughanem, H., Trouve´, A.: Proc. Combust. Inst. 27, 917–925 (1998)

    Google Scholar 

  6. Knikker, R., Veynante, D., Meneveau, C.: Proc. Combust. Inst. 29, 2105–2111 (2002)

    Article  Google Scholar 

  7. Hawkes, E. R., Cant, R. S.: Proc. Combust. Inst. 28, 51–58 (2000)

    Article  Google Scholar 

  8. Borghi, R.: Symposium on smart control of turbulence, University of Tokyo (2002).

  9. Celik, I., Yavuz, I., Smirnov, A.: Int. J. Engine Res. 2(2), 119–148 (2001)

    Article  Google Scholar 

  10. Fureby, C., Löfström, C.: Proc. Combust. Inst. 25, 1257–1264 (1994)

    Google Scholar 

  11. Weller, H. G., Tabor, G., Gosman, A. D., Fureby, C.: Proc. Combust. Inst. 27, 899–907 (1998)

    Google Scholar 

  12. Flohr, P., Pitsch, H.: Center for turbulence research, Proceedings of the Summer Program 2000, Stanford, pp. 169–179 (2000)

  13. Klein, M., Sadiki, A., Janicka, J.: J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  ADS  Google Scholar 

  14. Domaradzki, J. A., Adams, N. A.: J. Turbul. 3, 19 (2002)

    ADS  Google Scholar 

  15. Zimont, V. L., Battaglia, V.: ETMM6/Full technical programme (2005)

  16. Biagioli, F.: Combust. Theory Model. 10, 389–412 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Muppala, S. P. R., Aluri, N. K., Dinkelacker, F., Leipertz, A.: Comb. Flame. 140, 257–266 (2005)

    Article  Google Scholar 

  18. Kobayashi, H., Tamura, T., Maruta, K., Niioka, T.: Proc. Combust. Inst. 26, 389–396 (1996)

    Google Scholar 

  19. Griebel, P., Bombach, R., Inauen, A., Kreutner, W., Schären, R.: Proceedings of the 6th European Conference on Industrial Furnaces and Boilers, vol. II, (ISBN-972-8034-05-9, INFUB), 45–54 (2002)

  20. Griebel, P., Schären, R., Siewert, P., Bombach, R., Inauen, A., Kreutner, W.: ASME Paper No. GT2003-38398 (2003)

  21. Hirsch, C., Küenzi, T., Knöpfel, H. P., Paikert, B., Steinbach, C., Geng, W., Döbbeling, K.: ASME Paper no. GT-2002-30073 (2002)

  22. Kraichnan, R.: Phys. Fluids 11, 21–31 (1970)

    MathSciNet  Google Scholar 

  23. Smirnov, R., Shi, S., Celik, I.: J. Fluids Eng. 123, 359–371 (2001)

    Article  Google Scholar 

  24. Fluent (6.2): Fluent Incorporated, Lebanon, NH, USA (2005)

  25. Vervisch, L.: Summer school on “Large-Eddy Simulation (LES) of Reacting Flows.” Aristotle University of Thessaloniki, Lecture Notes (2004)

  26. Smagorinsky, J.: Mon. Weather Rev. 91, 99–164 (1963)

    Article  ADS  Google Scholar 

  27. Celik, I., Cehreli, Z. N., Yavuz, I.: ASME, J. Fluids Eng. 127(Sep), 949–958 (2005)

    Article  Google Scholar 

  28. Pope, S. B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  29. Muppala, S. P. R., Aluri, N. K., Dinkelacker, F.: Proceedings of the European Combustion Meeting, (Louvain-la-Neuve) Belgium (2005)

  30. Muppala, S. P. R., Dinkelacker, F.: Prog. Comp. Fluid Dyn. 4(6), 328–336 (2004).

    Google Scholar 

  31. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  32. Janicka, J., Sadiki, A.: Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  33. Pope, S. B.: New J. Phys. 6(35), 1–24 (2004)

    Google Scholar 

  34. Klein, M.: Flow Turbul. Combust. 75, 131–147 (2005)

    Article  MATH  Google Scholar 

  35. Aluri, N. K., Muppala, S. P. R., Dinkelacker, F.: Combust. Flame. 145, 663–674 (2006)

    Article  Google Scholar 

  36. Lipatnikov, A. N., Chomiak, J.: Prog. Energy Combust. Sci. 28, 1–74 (2002)

    Article  Google Scholar 

  37. Pitsch, H., Duchamp de Lageneste, L.: Proc. Combust. Inst. 29, 2001–2008 (2002)

    Article  Google Scholar 

  38. Celik, I., Klein, M., Janicka, J.: ASME Joint U.S. European Fluids Engineering Summer Meeting, July 17–20, Miami, FL, FEDSM 2006-98015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dinkelacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aluri, N.K., Muppala, S. & Dinkelacker, F. Large-Eddy Simulation of Lean Premixed Turbulent Flames of Three Different Combustion Configurations using a Novel Reaction Closure. Flow Turbulence Combust 80, 207–224 (2008). https://doi.org/10.1007/s10494-007-9114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-007-9114-2

Keywords

Navigation