Skip to main content
Log in

Near-Wake Turbulence Properties in the High Reynolds Number Incompressible Flow Around a Circular Cylinder Measured by Two- and Three-Component PIV

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The main objective of the present experimental study is to analyse the turbulence properties in unsteady flows around bluff body wakes and to provide a database for improvement and validation of turbulence models, concerning the present class of non-equilibrium flows. The flow around a circular cylinder with a low aspect ratio (\(L/D=4.8\)) and a high blockage coefficient (\(D/H=0.208\)) is investigated. This confined environment is used in order to allow direct comparisons with realisable 3D Navier–Stokes computations avoiding ‘infinite’ conditions. The flow is investigated in the critical regime at Reynolds number 140,000. A cartography of the velocity fields in the near wake of the cylinder is obtained by PIV and Stereoscopic PIV techniques. Statistical means and phase-averaged quantities are determined. Furthermore, POD analysis is performed on the data set in order to extract coherent structures of the flow and to compare the results with those obtained by the conditional sampling technique. The Reynolds stresses, the strain-rate and vorticity fields as well as the turbulence production terms are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, R.J., Christensen, K.T., Liu, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)

    Article  Google Scholar 

  2. Benedict, L.H., Gould, R.D.: Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22, 129–136 (1996)

    Article  Google Scholar 

  3. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bloor, M.: Transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19, 290–304 (1964)

    Article  MATH  ADS  Google Scholar 

  5. Boisson, H.C.: Développement de structures organisées turbulentes à travers l’exemple du sillage du cylindre ciculaire. Thèse de doctorat, Institut National Polytechnique de Toulouse

  6. Braza, M., Chassaing, P., Minh, H.H.: Prediction of large-scale transition features in the wake of a circular cylinder. Phys. Fluids, A 2(8), 1461–1471 (1990)

    Article  ADS  Google Scholar 

  7. Cantwell, B., Coles, D.: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374 (1983)

    Article  ADS  Google Scholar 

  8. Cid, E., Cazin, S., Drouin, V.: Validation de PIV stéréoscopique et application à un écoulement aérodynamique de sillage 3D. In: 8e Congrès Francophone de Vélocimétrie Laser

  9. Davies, M.E.: A comparison of the wake structure of a stationary and oscillating bluff body, using a conditional averaging technique. J. Fluid Mech. 75, 209–231 (1976)

    Article  ADS  Google Scholar 

  10. Djeridi, H., Braza, M., Perrin, R., Harran, G., Cid, E., Cazin, S.: Near-wake turbulence properties around a circular cylinder at high Reynolds number. Flow, Turbul. Combust. 71, 19–34 (2003)

    Article  MATH  Google Scholar 

  11. Gerrard, J.H.: The three-dimensional structure of the wake of a circular cylinder. J. Fluid Mech. 25, 143–164 (1966)

    Article  ADS  Google Scholar 

  12. Hussain, A.K.M.F., Hakayawa, M.: Eduction of large-scale organized structures in a turbulent plane wake. J. Fluid Mech. 180, 193–229 (1987)

    Article  ADS  Google Scholar 

  13. Jeong, J., Hussain, A.K.M.F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Jin, G., Braza, M.: A two-equation turbulence model for unsteady separated flows around airfoils. AIAA J. 32, 2316–2320 (1994)

    ADS  Google Scholar 

  15. Kourta, A., Boisson, H.C., Chassaing, P., Minh, H.H.: Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181, 141–161 (1987)

    Article  ADS  Google Scholar 

  16. Lecordier, B., Trinite, M.: Advanced PIV algorithms with image distortion – validation and comparison from synthetic images of turbulent flows. In: PIV03 Symposium. Busan, Korea (2003)

  17. Leder, A.: Dynamics of fluid mixing in separated flows. Phys. Fluids, A 3(7), 1741–1748 (1991)

    Article  ADS  Google Scholar 

  18. Norberg, C.: A experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994)

    Article  ADS  Google Scholar 

  19. Norberg, C.: LDV measurements in the near wake of a circular cylinder. In: Bearman, P.W., Williamson, C.H.K. (eds.) Proceedings of the 1998 Conference on Bluff Body Wakes and Vortex-Induced Vibration, pp. 1–12. Washington, DC, USA (1998)

  20. Persillon, H., Braza, M.: Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier–Stokes simulation. J. Fluid Mech. 365, 23–88 (1998)

    Article  MATH  ADS  Google Scholar 

  21. Prasad, A., Williamson, C.H.K.: The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. Reynolds, W.C., Hussain, A.K.M.F.: The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263–288 (1972)

    Article  ADS  Google Scholar 

  23. Richter, A., Naudascher, E.: Fluctuating forces on a rigid circular cylinder in confined flow. J. Fluid Mech. 78, 561–576 (1976)

    Article  ADS  Google Scholar 

  24. Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(3), 345–356 (1961)

    Article  MATH  ADS  Google Scholar 

  25. Wei, T., Smith, C.R.: Secondary vortices in the wake of circular cylinders. J. Fluid Mech. 169, 513–533 (1986)

    Article  ADS  Google Scholar 

  26. West, G.S., Apelt, C.J.: The effects of blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105. J. Fluid Mech. 114, 361–377 (1982)

    Article  ADS  Google Scholar 

  27. Willert, C.: Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Technol. 8, 1465–1479 (1997)

    Article  ADS  Google Scholar 

  28. Williamson, C.H.K.: The natural and forced formation of spot-like vortex dislocations in the transition of a wake. J. Fluid Mech. 243, 393–441 (1992)

    Article  ADS  Google Scholar 

  29. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wlezien, R.W., Way, J.L.: Techniques for the experimental investigation of the near wake of a circular cylinder. AIAA J. 17(6), 563–570 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Perrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, R., Braza, M., Cid, E. et al. Near-Wake Turbulence Properties in the High Reynolds Number Incompressible Flow Around a Circular Cylinder Measured by Two- and Three-Component PIV. Flow Turbulence Combust 77, 185–204 (2006). https://doi.org/10.1007/s10494-006-9043-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9043-5

Key words

Navigation