Skip to main content

Advertisement

Log in

Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A. guerreronis to cues from the predators Neoseiulus baraki and Amblyseius largoensis in coconut fruits, cues from conspecifics (A. guerreronis injured) and cues from the phytophage S. concavuscutum. The test was carried out through the release of about 300 A. guerreronis on coconut fruits previously treated with cues from predators, conspecific or heterospecific phytophagous. We also observed the walking behaviour of A. guerreronis exposed to the same chemical cues using a video tracking system. The infestation of fruits by A. guerreronis was greater in the presence of predator cues and reduced in the presence of S. concavuscutum cues, but cues from injured conspecifics did not interfere in the infestation process. In addition, the cues also altered the walking parameters of A. guerreronis: it walked more in response to cues from predators and the heterospecific phytophage. Aceria guerreronis spent more time in activity in the treatments with clues than in the control treatment. These results suggest that A. guerreronis recognizes cues from predators and competitors and modifies its behaviour to increase its fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams PA (2000) The evolution of predator–prey interactions: theory and evidence. Annu Rev Ecol Evol Syst 31:79–105

    Article  Google Scholar 

  • Agarwala BK, Bardhanroy P, Yasuda H, Takizawa T (2003) Effects of conspecific and heterospecific competitors on feeding and oviposition of a predatory ladybird: a laboratory study. Entomol Exp Appl 106:219–226

    Article  Google Scholar 

  • Aratchige NS, Sabelis MW, Lesna I (2007) Plant structural changes due to herbivory: do changes in Aceria-infested coconut fruits allow predatory mites to move under the perianth? Exp Appl Acarol 43:97–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Berryman AA (2003) On principles, laws and theory in population ecology. Oikos 103:695–701

    Article  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signaling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5:338–352

    Article  Google Scholar 

  • Chivers DP, Zhao X, Brown GE, Marchant T, Fernanez-Ferrari MC (2008) Predator-induced changes in morphology of a prey fish: the effects of food level and temporal frequency of predation risk. Evol Ecol 22:561–574

    Article  Google Scholar 

  • Corcoran AJ, Barber JR, Conner WE (2009) Tiger moth jams bat sonar. Science 325:325–327

    Article  CAS  PubMed  Google Scholar 

  • Da Silva FR, de Moraes GJ, Lesna I, Sato Y, Vasquez C, Hanna R, Janssen A (2016) Size of predatory mites and refuge entrance determine success of biological control of the coconut mite. Biocontrol 61:681–689

    Article  Google Scholar 

  • de Bruijn PJA, Egas M, Sabelis MW, Groot AT (2016) Context-dependent alarm signaling in an insect. J Evol Biol 29:665–671

    Article  PubMed  Google Scholar 

  • Dial BE, Schwenk K (1996) Olfaction and predator detection in Coleonyx brevis (Squamata, Eublepharidae), with comments on the functional significance of buccal pulsing in geckos. J Exp Zool 276:415–424

    Article  Google Scholar 

  • Dias CR, Bernardo AMG, Mencalha J, Freitas CWC, Sarmento RA, Pallini A, Janssen A (2016) Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators. Exp Appl Acarol 69:263–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: an ecological perspective. Annu Rev Ecol Evol Syst 32:1–23

    Article  Google Scholar 

  • Fernandez-Ferrari MCF, Schausberger P (2013) From repulsion to attraction: species-and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues. Naturwissenschaften 100:541–549

    Article  CAS  PubMed  Google Scholar 

  • Fletcher RJ (2007) Species interactions and population density mediate the use of social cues for habitat selection. J Anim Ecol 76:598–606

    Article  PubMed  Google Scholar 

  • Galvão AS, Melo JW, Monteiro VB, Lima DB, De Moraes GJ, Gondim MG (2012) Dispersal strategies of Aceria guerreronis (Acari: Eriophyidae), a coconut pest. Exp Appl Acarol 57:1–13

    Article  PubMed  Google Scholar 

  • Gondim MGC Jr, Oliveira JD, Michereff SJ, Barros R (2001) Ácaros de fruteiras tropicais: importância econômica, identificação e controle. Proteção de plantas na agricultura sustentável. Recife, UFRPE, pp 317–355

    Google Scholar 

  • Goodsman DW, Koch D, Whitehouse C, Evenden ML, Cooke BJ, Lewis MA (2016) Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecol Appl 26:2621–2634

    Article  CAS  PubMed  Google Scholar 

  • Grostal P, Dicke M (2000) Recognising one’s enemies: a functional approach to risk assessment by prey. Behav Ecol Sociobiol 47:258–264

    Article  Google Scholar 

  • Havel JE (1987) Predator-induced defenses: a review. In: Kerfoot CW, Shih A (eds) Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, pp 263–278

    Google Scholar 

  • Hoffmeister TS, Roitberg BD (1997) Counterespionage in an insect herbivore-parasitoid system. Naturwissenschaften 84:117–119

    Article  CAS  Google Scholar 

  • Howard FW, Abreu-Rodriguez E, Denmark HA (1990) Geographical and seasonal distribution of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), in Puerto Rico and Florida, USA. J Agric Univ Puerto Rico 74:237–251

    Google Scholar 

  • Huryn AD, Chivers DP (1999) Contrasting behavioral responses by detritivorous and predatory mayflies to chemicals released by injured conspecifics and their predators. J Chem Ecol 25:2729–2740

    Article  CAS  Google Scholar 

  • James WR, McClintock JB (2017) Anti-predator responses of amphipods are more effective in the presence of conspecific chemical cues. Hydrobiologia 797:277–288

    Article  Google Scholar 

  • Janssen A, Pallini A, Venzon M, Sabelis MW (1999) Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomol Exp Appl 92:73–82

    Article  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Article  Google Scholar 

  • Krebs JR, Davies NB (1987) An introduction to behavioural ecology. Blackwell, Oxford

    Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2007) Refuge use by the coconut mite Aceria guerreronis: fine scale distribution and association with other mites under the perianth. Biocontrol 43:102–110

    Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2008) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96

    Article  CAS  PubMed  Google Scholar 

  • Lima DB, Melo JWS, Gondim MGC Jr, Moraes GJ (2012) Limitations of Neoseiulus barakiand Proctolaelaps bickleyias control agents of Aceria guerreronisKeifer. Exp Appl Acarol 56:233–246

    Article  PubMed  Google Scholar 

  • Lima DB, Melo JW, Guedes RN, Siqueira HA, Pallini A, Gondim MGC Jr (2013) Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki. Exp Appl Acarol 60:381–393

    Article  PubMed  Google Scholar 

  • Lima DB, Oliveira HKV, Melo JWS, Gondim MG, Sabelis M, Pallini A, Janssen A (2017) Predator performance is impaired by the presence of a second prey species. Bull Entomol Res 107:313–321

    Article  CAS  PubMed  Google Scholar 

  • Manson DCM, Gerson U (1996) Web spinning, wax secretion and liquid secretion. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites-their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam, pp 251–257

    Chapter  Google Scholar 

  • Matthews RW, Matthews JR (2009) Chemical communication. In: Insect behavior, 2 eds, Springer, Berlin, pp 217–258

  • McMurtry JA, Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

    Article  Google Scholar 

  • Melo JWS, Lima DB, Pallini A, Oliveira JEM, Gondim MGC Jr (2011) Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis. Exp Appl Acarol 55:191–202

    Article  PubMed  Google Scholar 

  • Melo JW, Lima DB, Staudacher H, Silva FR, Gondim MGC Jr, Sabelis MW (2015) Evidence of Amblyseius largoensis and Euseius alatus as biological control agent of Aceria guerreronis. Exp Appl Acarol 67:411–421

    Article  CAS  PubMed  Google Scholar 

  • Michalska K (2016) The effect of predation risk on spermatophore deposition rate of the eriophyoid mite, Aculops allotrichus. Exp Appl Acarol 68:145–154

    Article  CAS  PubMed  Google Scholar 

  • Michalska K, Skoracka A, Navia D, Amrine JW (2010) Behavioural studies on eriophyoid mites: an overview. Exp Appl Acarol 51:31–59

    Article  PubMed  Google Scholar 

  • Mitchell MD, Bairos-Novak KR, Ferrari MC (2017) Mechanisms underlying the control of responses to predator odours in aquatic prey. J Exp Biol 220:1937–1946

    Article  PubMed  Google Scholar 

  • Montserrat M, Bas C, Magalhães S, Sabelis MW, De Roos AM, Janssen A (2007) Predators induce egg retention in prey. Oecologia 150:699–705

    Article  PubMed  Google Scholar 

  • Muleta MG, Schausberger P (2013) Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity. Anim Behav 86:507–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Nolte DL, Mason JR, Epple G, Aronov E, Campbell DL (1994) Why are predator urines aversive to prey? J Chem Ecol 20:1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Persons MH, Rypstra AL (2001) Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. J Chem Ecol 27:2493–2504

    Article  CAS  PubMed  Google Scholar 

  • Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, populations and communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reis AC, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P, Lawson-Balagbo LM, Barros R (2008) Population dynamics of Aceria guerreronis Keifer (Acari: Eriophyidae) and associated predators on coconut fruits in Northeastern Brazil. Neotrop Entomol 37:457–462

    Article  PubMed  Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites-their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam, pp 329–366

    Chapter  Google Scholar 

  • SAS Institute (2008) SAS/STAT user’s guide, v.8.02, TS level 2 MO. SAS Institute, Cary

    Google Scholar 

  • Sih A (1987) Predators and prey lifestyles: an evolutionary and ecological overview. In: Kerfoot CW, Sih A (eds) Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, pp 203–224

    Google Scholar 

  • Silva VF, França GV, Melo JWS, Guedes RNC, Gondim MGC Jr (2017) Targeting hidden pests: acaricides against the coconut mite Aceria guerreronis. J Pest Sci 90:207–215

    Article  Google Scholar 

  • Skaloudova B, Zemek R, Krivan V (2007) The effect of predation risk on an acarine system. Anim Behav 74:813–821

    Article  Google Scholar 

  • Soutar AR, Fullard JH (2004) Nocturnal anti-predator adaptations in eared and earless Nearctic Lepidoptera. Behav Ecol 15:1016–1022

    Article  Google Scholar 

  • Tollrian R, Harvell CD (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton

    Google Scholar 

  • van Maanen R, Broufas G, De Jong P, Aguilar-Fenollosa E, Revynthi A, Sabelis MW, Janssen A (2015) Predators marked with chemical cues from one prey have increased attack success on another prey species. Ecol Ent 40:62–68

    Article  Google Scholar 

  • Venzon M, Janssen A, Pallini A, Sabelis MW (2000) Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Anim Behav 60:369–375

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Érica C. Calvet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvet, É.C., Lima, D.B., Melo, J.W.S. et al. Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis. Exp Appl Acarol 74, 249–259 (2018). https://doi.org/10.1007/s10493-018-0233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-018-0233-3

Keywords

Navigation