Skip to main content
Log in

Post-embryonic development in the mite suborder Opilioacarida, with notes on segmental homology in Parasitiformes (Arachnida)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

In order to study homology among the major lineages of the mite (super)order Parasitiformes, developmental patterns in Opilioacarida are documented, emphasizing morphology of the earliest, post-embryonic instars. Developmental patterns are summarized for all external body structures, based on examination of material in four different genera. Development includes an egg, a 6-legged prelarva and larva, three 8-legged nymphal instars, and the adults, for the most complete ontogenetic sequence in Parasitiformes. The prelarva and larva appear to be non-feeding. Examination of cuticular structures over ontogeny allows development of an updated model for body segmentation and sensillar distribution patterns in Opilioacarida. This model includes a body made up of a well-developed ocular segment plus at most 17 additional segments. In the larvae and protonymphs each segment may carry up to six pairs of sensilla (setae or lyrifissures) arranged is distinct series (J, Z, S, Sv, Zv, Jv). The post-protonymphal instars add two more series (R and Rv) but no extra segments. This basic model is compatible with sensillar patterns in other Parasitiformes, leading to the hypothesis that all taxa in that (super)order may have the same segmental ground plan. The substantial segmental distortion implied in the model can be explained using a single process involving differential growth in the coxal regions of all appendage-bearing segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aeschlimann A, Hess E (1984) What is our current knowledge of acarine embryology? In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 1. Ellis Horwood Limited, Chichester, pp 90–99

    Google Scholar 

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Google Scholar 

  • Alberti G (1980) Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari). II. Actinotrichida. Zool Jahrb Anat 104:144–203

    Google Scholar 

  • Alberti G (2005) On some fundamental characteristics in acarine morphology. Atti Accad Naz Ital Entomol 53:315–360

    Google Scholar 

  • Alberti G, Coons LB (1999) Volume 8C. Acari: Mites. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates. Chelicerate Arthropoda. Wiley, New York, pp 515–1215

    Google Scholar 

  • Altner A, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int J Cytol 67:69–139

    Article  Google Scholar 

  • André HM, N’Dri JK (2013 (2012)) Bréviaire de taxonomie des acariens, vol 13. Bruxelles, Belgique, Abc Taxa

  • Athias-Henriot C (1957) Phytoseiidae et Aceosejiidae (Acarina, Gamasina) d’Algérie. I. Genres Blattisocius keegan, Iphiseius Berlese, Amblyseius Berlese, Phytoseius Ribago, Phytoseiulus Evans. Bull Soc Hist Nat Afr Nord 48:319–352

    Google Scholar 

  • Athias-Henriot C (1971) Un progrès dans la connaissance de la composition métamérique des gamasides: leur sigillotaxie idiosomale (Arachnida). Bull Soc Zool Fr 96:73–85

    Google Scholar 

  • Bernardi LFdO, Klompen H, Ferreira RL (2013a) Adult growth in Opilioacaridae with 1904 (Acari: Parasitiformes: Opilioacarida). Ann Entomol Soc Am 106:788–790. doi:10.1603/AN13056

    Article  Google Scholar 

  • Bernardi LFdO, Klompen H, Zacarias MS, Ferreira RL (2013b) A new species of Neocarus Chamberlin & Mulaik, 1942 (Opilioacarida: Opilioacaridae) from Brazil, with remarks on postembryonic development. Zookeys 358:69–89. doi:10.3897/zookeys.358.6384

    Article  PubMed  Google Scholar 

  • Bernardi LFdO, Silva FAB, Zacarias MS, Klompen H, Ferreira RL (2013c) Phylogenetic and biogeographic analysis of the genus Caribeacarus (Acari: Opilioacarida), with description of a new South American species. Invertebr Syst 27:294–306. doi:10.1071/IS12041

    Article  Google Scholar 

  • Camin JH, Clark GM, Gorirossi-Bourdeau F (1958) The palpal “tined seta” in the Mesostigmata, a homologue of the palpal claw in the Onychopalpida (Acarina).In: Proceedings of the tenth international congress of entomology, pp 903–908

  • Chamberlin RV, Mulaik S (1942) On a new family of Notostigmata. Proc Biol Soc Wash 55:125–132

  • Coineau Y (1973) A propos de quelques caractères particulièrement primitifs de la prélarva et de la larva d’un Opilioacaridae du Gabon (Acariens). C R Acad Sci Paris 276:1181–1184

    Google Scholar 

  • Coineau Y, Legendre R (1975) Sur un mode de régénération appendiculaire inédit chez les Arthropodes: la régénération des pattes marcheuses chez les Opilioacariens (Acari: Notostigmata). C R Acad Sci Paris 280:41–43

    Google Scholar 

  • Coineau Y, Van der Hammen L (1979) The postembryonic development of Opilioacarida, with notes on new taxa and on a general model for the evolution. In: Piffl E (ed) Proceedings 4th international congress of acarology, Saalfelden (Austria), Akadémiai Kiadó, Budapest, pp 437–441

  • Damen WGM, Hausdorf M, Seyfarth E-A, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 95:10665–10670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunlop JA, Alberti G (2007) The affinities of mites and ticks: a review. J Zool Syst Evol Res. doi:10.1111/j.1439-0469.2007.00429.x

    Google Scholar 

  • Evans GO (1992) Principles of acarology, 1st edn. CAB international, Wallingford

  • Grandjean F (1936) Un acarien synthétique: Opilioacarus segmentatus With. Bull Soc Hist Nat Afr Nord 27:413–444

    Google Scholar 

  • Grandjean F (1954) Étude sur les Palaeacaroides (Acariens, Oribates). Mém Mus nat Hist natur (NS), sér A Zool 7:179–272

    Google Scholar 

  • Grandjean F (1969) Stases. Actinopiline. Rappel de ma classification des acariens en 3 groupes majeurs. Terminologie en soma. Acarologia 11:796–827

    Google Scholar 

  • Johnston DE (1982) Opilioacariformes, Parasitiformes. In: Parker SB (ed) Synopsis and classification of living organisms. McGraw-Hill, New York, pp 111–117

    Google Scholar 

  • Klompen H (1992) Comparative morphology of argasid larvae (Acari: Ixodida: Argasidae), with notes on phylogenetic relationships. Ann Entomol Soc Am 85:541–560

    Article  Google Scholar 

  • Klompen H (2000) Prelarva and larva of Opilioacarus (Neocarus) texanus (Chamberlin & Mulaik) (Acari: Opilioacarida) with notes on the patterns of setae and lyrifissures. J Nat Hist 34:1977–1992. doi:10.1080/00222930050144819

    Article  Google Scholar 

  • Klompen H (2010) Holothyrids and ticks: new insights from larval morphology and DNA sequencing, with the description of a new species of Diplothyrus (Parasitiformes: Neothyridae). Acarologia 50:269–285. doi:10.1051/acarologia/20101970

    Article  Google Scholar 

  • Klompen H, Keirans JE, Filippova NA, Oliver JH Jr (1996) Idiosomal lyrifissures, setae, and small glands as taxonomic characters and potential indicators of ancestral segmentation patterns in larval Ixodidae (Acari: Ixodida). Int J Acarol 22:113–134

    Article  Google Scholar 

  • Klompen H, Lekveishvili MG, Black WC IV (2007) Phylogeny of parasitiform mites (Acari) based on rRNA. Mol Phylogenet Evol 43:936–951. doi:10.1016/j.ympev.2006.10.024

    Article  CAS  PubMed  Google Scholar 

  • Krantz GW (2009) Form and Function. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 5–53

    Google Scholar 

  • Leclerc P (1989) Considerations paléogéographique à propos de la découverte en Thaïlande d’Opilioacariens nouveaux (Acari-Notostigmata). C R Soc Biogéogr 65:162–174

    Google Scholar 

  • Lindquist EE (1984) Current theories on the evolution of major groups of Acari and on their relationship with other groups of Arachnida, with consequent implications for their classification. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 1. Ellis Horwood Limited, Chichester, pp 28–62

    Google Scholar 

  • Lindquist EE (1994) Some observations on the chaetotaxy of the caudal body region of gamasine mites (Acari: Mesostigmata), with a modified notation for some ventrolateral body setae. Acarologia 35:323–326

    Google Scholar 

  • Lindquist EE, Evans GO (1965) Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Mem Entomol Soc Can 47:1–64

    Google Scholar 

  • Lindquist EE, Krantz GW, Walter DE (2009) Classification. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 97–103

    Google Scholar 

  • Moraza ML (2005) Tarsus I chaetotaxy and structure in Anactinotrichida mites: characters with phylogenetic value. In: Weigmann G, Alberti G, Wohltmann A, Ragusa S (eds) Acarine biodiversity in the natural and human sphere, vol XIV. Phytophaga, Palermo, pp 347–359

    Google Scholar 

  • Murrell A, Dobson SJ, Walter DE, Campbell NJH, Shao R, Barker SC (2005) Relationships among the three major lineages of the Acari (Arthropoda : Arachnida) inferred from small subunit rRNA: paraphyly of the Parasitiformes with respect to the Opilioacariformes and relative rates of nucleotide substitution. Invertebr Syst 19:383–389

    Article  CAS  Google Scholar 

  • Naudo MH (1963) Acariens Notostigmata de l’Angola. Publ Cult Co Diam Ang, Lisboa 63:13–24

    Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, OConnor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman & Hall, New York, pp 8–99

    Chapter  Google Scholar 

  • Pepato AR, da Rocha CEF, Dunlop JA (2010) Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol. doi:10.1186/1471-2148-10-235

    PubMed Central  PubMed  Google Scholar 

  • Pound JM, Campbell JD, Andrews RH, Oliver JH Jr (1986) The relationship between weights of nymphal stages and subsequent development of Ornithodoros parkeri (Acari: Argasidae). J Med Entomol 23:320–325

    Article  CAS  PubMed  Google Scholar 

  • Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araujo HM, Feitosa NM, Logullo C, Nunes da Fonseca R (2013) The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis 51:803–818. doi:10.1002/dvg.22717

    Article  CAS  PubMed  Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi:10.1007/s00427-006-0085-4

    Article  PubMed  Google Scholar 

  • Schulze P (1932) Über die Körpergliederung der Zecken, die Zusammenzetzung des Gnathosoma und die Beziehungen der Ixodoidea zu den fossilen Anthracomarti. Sitz ber Abh Naturf Ges Rostock 3:104–126

    Google Scholar 

  • Shultz JW (1989) Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications. Zool J Linn Soc 97:1–56

    Article  Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265

    Article  Google Scholar 

  • Sitnikova LG (1978) The main evolutionary trends of the Acari and the problem of their monophyletism. Entomol Obozr 57:431–457

    Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 95:10671–10675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Hammen L (1966) Studies on Opilioacarida (Arachnida). I. Description of Opilioacarus texanus (Chamberlin & Mulaik) and revised classification of the genera. Zool Verhand, Leiden 86:3–80

  • Van der Hammen L (1968) Studies on Opilioacarida (Arachnida). II. Redescription of Paracarus hexophthalmus (Redikorzev). Zool Meded, Leiden 43:57–76

  • Van der Hammen L (1969) Studies on Opilioacarida (Arachnida). III. Opilioacarus platensis Silvestri, and Adenacarus arabicus (With). Zool Meded, Leiden 44:113–131

  • Van der Hammen L (1970) La segmentation primitive des Acariens. Acarologia 12:3–10

  • Van der Hammen L (1977) Studies on Opilioacarida (Arachnidea). IV. The genera Panchaetes Naudo and Salfacarus gen. nov. Zool Meded, Leiden 51:43–78

  • Van der Hammen L (1989) An introduction to comparative arachnology. SPB Academic Publishing, The Hague

  • Vázquez MM, Klompen H (2002) The family Opilioacaridae (Acari: Parasitiformes) in North and Central America, with description of four new species. Acarologia 42:299–322

    Google Scholar 

  • Vázquez MM, Klompen H (2009) New species of New World Opilioacaridae (Acari: Parasitiformes) with the description of a new genus from the Caribbean region. Zootaxa 2061:23–44

    Google Scholar 

  • Vázquez MM, Klompen H (2010) The genus Salfacarus (Acari: Opilioacarida) in Madagascar. Zootaxa 2482:1–21

    Google Scholar 

  • Vázquez MM, Palacios-Vargas JG (1988) Algunas observationes sobre el comportamiento de los acaros opilioacaridos (Acarida: Notostigmata). Rev Nica Ent 6:1–6

    Google Scholar 

  • Walter DE, Proctor HC (1998) Feeding behaviour and phylogeny: observations on early derivative Acari. Exp Appl Acarol 22:39–50. doi:10.1023/A:1006033407957

    Article  Google Scholar 

  • Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. CABI Publishing, New York

    Google Scholar 

  • Walter DE, Proctor HC (2013) Mites: ecology, evolution & behaviour, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Weigmann G (2001) The body segmentation of oribatid mites from a phylogenetic perspective. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: proceedings of the 10th international congress, CSIRO Publishing, Melbourne, pp 43–49

  • Wolff C, Hilbrant M (2011) The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 8:1–34

    Article  Google Scholar 

Download references

Acknowledgments

For permission to examine specimens they collected, or in their collection, we thank Luis F. de Armas, Brian Fisher, Charles Griswold, Mark Harvey, Dania Prieto, Will Reeves, Owen Seeman, and Darryll Ubick. This work was supported in part by NSF Grant DEB-REVSYS 1026146 (HK), CUMEX (Consorcio de Universidades Mexicanas (MMV), and Capes/Brazil PDSE 1202-12-0 (LFOB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Klompen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klompen, H., Vázquez, M.M. & Bernardi, L.F.O. Post-embryonic development in the mite suborder Opilioacarida, with notes on segmental homology in Parasitiformes (Arachnida). Exp Appl Acarol 67, 183–207 (2015). https://doi.org/10.1007/s10493-015-9939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9939-7

Keywords

Navigation