Skip to main content
Log in

Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent?

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The predatory mite Amblyseius swirskii quickly became one of the most successful biocontrol agents in protected cultivation after its introduction into the market in 2005 and is now released in more than 50 countries. There are several key factors contributing to this success: (1) it can control several major pests including the western flower thrips, Frankliniella occidentalis, the whiteflies Bemisia tabaci and Trialeurodes vaporariorum and the broad mite, Polyphagotarsonemus latus, simultaneously in vegetables and ornamental crops; (2) it can develop and reproduce feeding on non-prey food sources such as pollen, which allows populations of the predator to build up on plants before the pests are present and to persist in the crop during periods when prey is scarce or absent; and (3) it can be easily reared on factitious prey, which allows economic mass production. However, despite the fact that A. swirskii provides growers with a robust control method, external demands were initially a key factor in promoting the use of this predator, particularly in Spain. In 2006, when exports of fresh vegetables from Spain were stopped due to the presence of pesticide residues, growers were forced to look for alternatives to chemical control. This resulted in the massive adoption of biological control-based integrated pest management programmes based on the use of A. swirskii in sweet pepper. Biological control increased from 5 % in 2005, 1 year before A. swirskii was commercially released, to almost 100 % of a total 6,000 ha of protected sweet pepper in Spain within 3 years. Later, it was demonstrated that A. swirskii was equally effective in other crops and countries, resulting in extensive worldwide use of A. swirskii in greenhouses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou-Awad BA, El-Sawaf BM, Abdel-Khalek AA (1999) Impact of two eriophyoid fig mites, Aceria ficus and Rhyncaphytoptus fucifoliae, as prey on postembryonic development and oviposition rate of the predacious mite Amblyseius swirskii. Acarologia 40:367–371

    Google Scholar 

  • Abou-Awad BA, Metwally AM, Al-Azzazy MM (2010) Typhlodromips swirskii (Acari: Phytoseiidae) a predator of eriophyid and tetranychid mango mites in Egypt. Acta Phytopathol Entomol Hung 45:135–148

    Article  Google Scholar 

  • Abou-Awad BA, Afia S, Al-Azzazy MM (2011) Mango powdery mildew Oidium mangiferae an alternative food for the predatory mites Typhlodromus mangiferus and Typhlodromips swirskii (Phytoseiidae) in absence or presence increasing prey density of Oligonychus mangiferus (Tetranychidae) in Egypt. Arch Phytopathol Plant Prot 44:1703–1710

    Article  Google Scholar 

  • Abou-Awad BA, Hafez SM, Farhat BM (2014a) Biological studies of the predacious mite Amblyseius swirskii, a predator of the broad mite Polyphagotarsonemus latus on pepper plants (Acari: Phytoseiidae: Tarsonemidae). Arch Phytopathol Plant Prot 47:349–354

    Article  CAS  Google Scholar 

  • Abou-Awad BA, Hafez SM, Farhat BM (2014b) Bionomics and control of the broad mite Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Arch Phytopathol Plant Prot 47:631–641

    Article  CAS  Google Scholar 

  • Abou-Ellela GM, Saber SA, El-Sawi SA (2013) Biological aspects and life tables of the predacious mites, Typhlodromips swirskii (Athias-Henriot) and Euseius scutalis (Athias-Henriot) feeding on two scale insect species and plant pollen. Arch Phytopathol Plant Prot 46:1717–1725

  • Ali FS, Zaher MA (2007) Effect of food and temperature on the biology of Typhlodrompis swirskii (Athias-Henriot) (Acari: Phytoseiidae). Acarines 1:17–21

    Google Scholar 

  • Arthurs S, McKenzie CL, Chen J, Dogramaci M, Brennan M, Houben K, Osborne L (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96

  • Athias-Henriot C (1962) Amblyseius swirskii, un nouveau phytoseiide voisin d’ A. andersoni (Acariens Anactinotriches). Ann Ec Natl Agric Alger 3:1–7

    Google Scholar 

  • Avery PB, Kumar V, Xiao Y, Powell CA, McKenzie CL, Osborne LS (2014) Selecting an ornamental pepper banker plant for Amblyseius swirskii in floriculture crops. Arthropod Plant Interact 8:49–56

    Article  Google Scholar 

  • Baxter I, Midthassel A, Stepman W, Fryer R, Puerto-Garcia F, Lewis J, Walker P, Hulshof J (2011) Field results of a sachet release system using the predator Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) and the factitious prey, Suidasia medanensis Oudemans (Acari: Astigmata). IOBC WPRS Bull 68:1–4

    Google Scholar 

  • Belda JE, Calvo J (2006) Eficacia de Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) en el control biológico de Bemisia tabaci (Genn.) (Hom.: Aleyrodidae) y Frankliniella occidentalis (Pergande) (Thys.: Thripidae) en pimiento en condiciones de semicampo. Bol Sanid Veg Plagas 32:283–296

    Google Scholar 

  • Bolckmans KJF, van Houten YM (2006) Mite composition, use thereof, method for rearing the phytoseiid predatory mite Amblyseius swirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop. WO Patent WO/2006/057552

  • Bolckmans K, van Houten Y, Hoogerbrugge H (2005) Biological control of whiteflies and western flower thrips in greenhouse sweet peppers with the phytoseiid predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). In: Proceedings 2nd International Symposium on Biological Control of Arthropods, pp 555–565

  • Bolckmans KJF, van Houten YM, van Baal AE, Stam AT (2013) Phytoseiid predatory mite releasing system and method for production. WO Patent WO/2013/043050

  • Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex? Ann Rev Entomol 40:511–534

    Article  CAS  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114

    Article  Google Scholar 

  • Buitenhuis R, Murphy G, Shipp L, Scott-Dupree C (2015) Amblyseius swirskii in greenhouse production systems: a floriculture perspective. Exp Appl Acarol. doi:10.1007/s10493-014-9869-9

  • Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R (1996a) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:343–349

    Article  CAS  Google Scholar 

  • Cahill M, Jarvis W, Gorman K, Denholm I (1996b) Resolution of baseline response and documentation of resistance to buprofezin in Bemisia tabaci (Hom.: Aleyrodidae). Bull Entomol Res 86:117–122

    Article  CAS  Google Scholar 

  • Calvo FJ, Belda JE (2007) Amblyseius swirskii, un depredador para el control de mosca blanca y trips en cultivos hortícolas. Phytoma España 190:58–62

    Google Scholar 

  • Calvo J, Urbaneja A (2004) Nesidiocoris tenuis, un aliado para el control biológico de la mosca blanca. Hortic Int 44:20–25

    Google Scholar 

  • Calvo J, Peña A, Belda JE (2007) Efectos secundarios de productos fitosanitarios sobre el ácaro depredador Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). In: Proceedings V Congreso Nacional de Entomología Aplicada, Cartagena, Spain

  • Calvo FJ, Bolkmans K, Belda JE (2008) Controlling the tobacco whitefly Bemisia tabaci (Genn.) (Hom.: Aleyrodidae) in horticultural crops with the predatory mite Amblyseius swirskii (Athias-Henriot). J Insect Sci 8:4

    Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2009) Development of a biological control-based IPM method for Bemisia tabaci for protected sweet pepper crops. Entomol Exp Appl 133:9–18

    Article  CAS  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. Biocontrol 56:185–192

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Technol 22:1398–1416

    Article  Google Scholar 

  • Chow A, Chau A, Heinz KM (2010) Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol Control 53:188–196

    Article  Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Consoli FI, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? Biocontrol 55:199–218

    Article  Google Scholar 

  • CVUA Stuttgart (2007) Residues of the unauthorized insecticide isofenphos-methyl detected in sweet peppers from Spain. http://www.cvuas.de/pub/beitrag.asp?ID=646&subid=1&Thema_ID=5 (accessed 20 Oct 2014)

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Ann Rev Entomol 56:1–19

    Article  Google Scholar 

  • Demite PR, de Moraes GJ, McMurtry JA, Denmark HA, Castilho R de C (2014) Phytoseiidae database. www.lea.esalq.usp.br/phytoseiidae (accessed 20 Oct 2014)

  • Dogramaci M, Arthurs SP, Chen J, McKenzie C, Irrizary F, Osborne L (2011) Management of chilli thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppers by Amblyseius swirskii (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae). Biol Control 59:340–347

    Article  Google Scholar 

  • El-Laithy AYM, Fouly AH (1992) Life table parameters of two phytoseiid predators Amblyseius scutalis (Athias-Henriot) and A. swirskii Athias-Henriot. J Appl Entomol 113:8–12

    Article  Google Scholar 

  • Espinosa PJ, Bielza P, Contreras J, Lacasa A (2002) Insecticide resistance in field populations of Frankliniella occidentalis (Pergande) in Murcia (south-east Spain). Pest Manag Sci 58:967–971

    Article  CAS  PubMed  Google Scholar 

  • Fernández E, Gravalos C, Haro PJ, Cifuentes D, Bielza P (2009) Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Manag Sci 65:885–891

    Article  PubMed  Google Scholar 

  • Fidgett MJ, Stinson CSA (2008) Method for rearing predatory mites. WO Patent WO/2008/015393

  • Fouly AH, Al-Deghairi MA, Abdel Baky NF (2011) Biological aspects and life tables of Typhlodromips swirskii (Acari: Phytoseiidae) fed Bemisia tabaci (Hemiptera: Aleyroididae). J Entomol 8:52–62

    Article  Google Scholar 

  • Fransen JJ (1994) Bemisia tabaci in the Netherlands; here to stay? Pestic Sci 42:129–134

    Article  CAS  Google Scholar 

  • Frutas y Hortalizas (2014) Anuario Hortícola 2014. Frutas y Hortalizas, Almeria

  • Gerling D, Mayer RT (eds) (1996) Bemisia: 1995. Taxonomy, biology, damage, control and management. Intercept, Andover

    Google Scholar 

  • Gerson U, Weintraub PG (2012) Mites (Acari) as a factor in greenhouse management. Ann Rev Entomol 57:229–247

    Article  CAS  Google Scholar 

  • Glass R, Gonzalez FJE (2012) Biological control in the greenhouses of Almeria and challenges for a sustainable intensive production. Outlooks Pest Manag 2012:276–278

    Article  Google Scholar 

  • Goleva I, Zebitz CPW (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp Appl Acarol 61:259–283

    Article  CAS  PubMed  Google Scholar 

  • Gradish AE, Scott-Dupree CD, Shipp L, Harris CR, Ferguson G (2011) Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Manag Sci 67:82–86

    Article  CAS  PubMed  Google Scholar 

  • Hoda FM, El-Naggar ME, Taha AH, Ibrahim GA (1986) Effect of different types of food on fecundity of predaceous mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Bull Soc Entomol Egypt 66:113–116

    Google Scholar 

  • Hoogerbrugge H, Calvo J, van Houten Y, Bolckmans K (2005) Biological control of the tobacco whitefly Bemisia tabaci with the predatory mite Amblyseius swirskii in sweet pepper crops. IOBC WPRS Bull 28(1):119–122

    Google Scholar 

  • Hoogerbrugge H, Oude Lenferink K, van Houten Y, Bolckmans K (2014) Screening of three phytoseiid mite species as biocontrol agents of Echinothrips americanus. IOBC WPRS Bull 102:97–101

    Google Scholar 

  • Ji J, Lin T, Zhang Y, Lin J, Sun L, Chen X (2013) A comparison between Amblyseius (Typhlodromips) swirskii and Amblyseius eharai with Panonychus citri (Acari: Tetranychidae) as prey: developmental duration, life table and predation. Syst Appl Acarol 18:123–129

    Article  Google Scholar 

  • Juan-Blasco M, Qureshi JA, Urbaneja A, Stansly P (2012) Predatory mite, Amblyseius swirskii (Acari: Phytoseiidae), for biological control of Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae). Fla Entomol 95:543–551

    Article  Google Scholar 

  • Knapp M, van Houten Y, Hoogerbrugge H, Bolckmans K (2013) Amblydromalus limonicus (Acari: Phytoseiidae) as a biocontrol agent: literature review and new findings. Acarologia 53:191–202

    Article  Google Scholar 

  • Krautter M (2007) Essen ohne Pestizide. Greenpeace, Hamburg

    Google Scholar 

  • Kumar V, Wekesa VW, Avery PB, Powell CA, McKenzie CL, Osborne LS (2014) Effect of pollens of various ornamental pepper cultivars on the development and reproduction of Amblyseius swirskii (Acari: Phytoseiidae). Fla Entomol 97:367–373

    Article  Google Scholar 

  • Lee H, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27

    Article  PubMed  Google Scholar 

  • Merino-Pacheco M (2007) Almeria finally forced to turn green. Fruit Veg Technol 7(1):23–25

    Google Scholar 

  • Messelink G, van Steenpaal S, van Wensveen W (2005) Typhlodromips swirskii (Athias-Henriot) (Acari: Phytoseiidae): a new predator for thrips control in greenhouse cucumber. IOBC WPRS Bull 28(1):183–186

    Google Scholar 

  • Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55:387–398

    Article  Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Cortes JA, Sabelis MW, Janssen A (2011) Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol Control 57:246–252

    Article  Google Scholar 

  • Metwally AM, Abou-El-Naga MM, Taha HA, Hoda FM (1984) Studies on feeding, reproduction and development of Amblyseius swirskii (A.H.) (Acarina: Phytoseiidae). Agric Res Rev 62:323–326

    Google Scholar 

  • Midthassel A, Leather SR, Baxter IH (2013) Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasiidae). Exp Appl Acarol 61:69–78

    Article  PubMed  Google Scholar 

  • Midthassel A, Leather SR, Wright DJ, Baxter IH (2014) The functional and numerical response of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasiidae) in the context of a breeding sachet. Biocontrol Sci Technol 24:361–374

    Article  Google Scholar 

  • Momen FM, Abdel-Khalek A (2008) Effect of the tomato russet mite Aculops lycoeprsici (Acari: Eriophyidae) on the development and reproduction of three predatory phytoseiid mites. Int J Trop Insect Sci 28:53–57

    Article  Google Scholar 

  • Momen FM, El-Saway SA (1993) Biology and feeding behavior of the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 34:199–204

    Google Scholar 

  • Murphy G (2014) Grower adoption of biological control in greenhouse ornamentals and the role of technology transfer. IOBC WPRS Bull 102:163–167

    Google Scholar 

  • Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DT, Vangansbeke D, Lü X, De Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. Biocontrol 58:369–377

    Article  CAS  Google Scholar 

  • Nguyen DT, Vangansbeke D, De Clercq P (2014a) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 62:181–194

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DT, Vangansbeke D, De Clercq P (2014b) Solid artificial diets for the phytoseiid predator Amblyseius swirskii. Biocontrol. doi:10.1007/s10526-014-9607-6

    Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291

    Article  CAS  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  PubMed  Google Scholar 

  • Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp Appl Acarol 31:15–26

    Article  PubMed  Google Scholar 

  • Nomikou M, Sabelis MW, Janssen A (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. Biocontrol 55:253–260

    Article  Google Scholar 

  • Onzo A, Houedokoho AF, Hanna R (2012) Potential of the predatory mite, Amblyseius swirskii to suppress the broad mite, Polyphagotarsonemus latus on the gboma eggplant, Solanum macrocarpon. J Insect Sci 12(7):1–11

    Article  Google Scholar 

  • Opit GP, Nechols JR, Margolies DC, Williams KA (2005) Survival, horizontal distribution, and economics of releasing predatory mites (Acari: Phytoseiidae) using mechanical blowers. Biol Control 33:344–351

    Article  Google Scholar 

  • Park H, Shipp L, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103:563–569

    Article  PubMed  Google Scholar 

  • Park H, Shipp L, Buitenhuis R, Ahn JJ (2011) Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). J Asia-Pac Entomol 14:497–501

    Article  Google Scholar 

  • Peña JE, Rodrigues JCV, Roda A, Carrillo D, Osborne LS (2009) Predator-prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics. IOBC WPRS Bull 50:69–79

    Google Scholar 

  • Pezzi F, Martelli R, Lanzoni A, Maini S (2015) Effects of mechanical distribution on survival and reproduction of Phytoseiulus persimilis and Amblyseius swirskii. Biosyst Eng 129:11–19

    Article  Google Scholar 

  • Porath A, Swirski E (1965) A survey of phytoseiid mites (Acarina: Phytoseiidae) on citrus with a description of one new species. Isr J Agric Res 15:87–100

    Google Scholar 

  • Ragusa S, Swirski E (1975) Feeding habits, development and oviposition of the predacious mite Amblyseius swirskii Athias-Henriot (Acarina: Phytoseiidae) on pollen of various weeds. Isr J Entomol 10:93–103

    Google Scholar 

  • Ragusa S, Swirski E (1977) Feeding habits, post-embryonic and adult survival, mating, virility and fecundity of the predacious mite Amblyseius swirskii (Acarina: Phytoseiidae) on some coccids and mealybugs. Entomophaga 22:383–392

    Article  Google Scholar 

  • Skirvin D, Fenlon J (2003) Of mites and movement: the effects of plant connectedness and temperature on movement of Phytoseiulus persimilis. Biol Control 27:242–250

    Article  Google Scholar 

  • Stansly PA, Castillo J (2009) Control of broad mite, Polyphagotarsonemus latus and the whitefly Bemisia tabaci in open field pepper and eggplant with predaceous mites. IOBC WPRS Bull 49:145–152

    Google Scholar 

  • Stansly PA, Sánchez PA, Rodríguez JM, Cañizares F, Nieto A, López MJ, Fajardo M, Suárez V, Urbaneja A (2004) Prospects for biological control of Bemisia tabaci (Homoptera, Aleyrodidae) in greenhouse tomatoes of Southern Spain. Crop Prot 23:701–712

    Article  Google Scholar 

  • Stansly PA, Calvo FJ, Urbaneja A (2005) Augmentative biological control of Bemisia tabaci biotype “Q” in Spanish greenhouse pepper production using Eretmocerus spp. Crop Prot 24:829–835

    Article  Google Scholar 

  • Swirski E, Amitai S (1997) Annotated list of phytoseiid mites (Mesostigmata: Phytoseiidae) in Israel. Isr J Entomol 31:21–46

  • Swirski E, Amitai S, Dorzia N (1967) Laboratory studies on the feeding, development and oviposition of the predaceous mites Amblyseius rubini Swirski and Amitai and Amblyseius swirskii Athias-Henriot (Acarina: Phytoseiidae) on various kinds of food substances. Isr J Agric Res 17:101–119

    Google Scholar 

  • Tal C, Coll M, Weintraub PG (2007) Biological control of Polyphagotarsonemus latus (Acari: Tarsonemidae) by the predaceous mite Amblyseius swirskii (Acari: Phytoseiidae). IOBC WPRS Bull 30(5):111–115

    Google Scholar 

  • Teich Y (1966) Mites of the family of Phytoseiidae as predators of the tobacco whitefly, Bemisia tabaci Gennadius. Isr J Agric Res 16:141–142

    Google Scholar 

  • van der Blom J (2005) Control biológico en cultivos hortícolas bajo abrigo. Horticultura 189:10–17

    Google Scholar 

  • van der Blom J, Robledo A, Torres S, Sánchez JA (2008) Control biológico de plagas en Almería: revolución verde después de dos décadas. Phytoma España 198:42–48

    Google Scholar 

  • Van Driesche RG, Heinz KM (2004) An overview of biological control in protected culture. In: Heinz KM, Van Driesche RG, Parrella MP (eds) Biocontrol in protected culture. Ball Publishing Batavia, Illinois, pp 1–24

  • van Houten YM, van Rijn PCJ, Tanigoshi LK, van Stratum P (1993) Potential of phytoseiid predators to control western flower thrips in greenhouse crops, in particular during the winter period. IOBC WPRS Bull 16(8):98–101

    Google Scholar 

  • van Houten YM, van Rijn PCJ, Tanigoshi LK, van Stratum P, Bruin J (1995) Preselection of predatory mites to improve year-round biological control of western flower thrips in greenhouse crops. Entomol Exp Appl 74:225–234

    Article  Google Scholar 

  • van Houten Y, Østlie ML, Hoogerbrugge H, Bolckmans K (2005) Biological control of western flower thrips on sweet pepper using the predatory mites Amblyseius cucumeris, Iphiseius degenerans, A. andersoni and A. swirskii. IOBC WPRS Bull 28(1):283–286

    Google Scholar 

  • van Houten YM, Hoogerbrugge H, Bolckmans KJF (2007a) Spider mite control by four phytoseiid species with different degrees of polyphagy. IOBC WPRS Bull 30(5):123–127

    Google Scholar 

  • van Houten YM, Hoogerbrugge H, Bolckmans KJF (2007b) The influence of Amblyseius swirskii on biological control of two-spotted spider mites with the specialist predator Phytoseiulus persimilis (Acari: Phytoseiidae). IOBC WPRS Bull 30(5):129–132

    Google Scholar 

  • van Houten YM, Glas JJ, Hoogerbrugge H, Rothe J, Bolckmans KJF, Simoni S, van Arkel J, Alba JM, Kant MR, Sabelis MW (2013) Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici. Exp Appl Acarol 60:127–138

    Article  PubMed Central  PubMed  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20

    Article  Google Scholar 

  • van Lenteren JC, Bueno VHP (2003) Augmentative biological control of arthropods in Latin America. Biocontrol 48:123–139

    Article  Google Scholar 

  • van Lenteren JC, Martin NA (1999) Biological control of whitefly. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Dordrecht, pp 202–216

    Chapter  Google Scholar 

  • van Maanen R, Vila E, Sabelis MW (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34

    Article  PubMed Central  PubMed  Google Scholar 

  • van Maanen R, Messelink GJ, van Holstein-Saj R, Sabelis MW, Janssen A (2012) Prey temporarily escape from predation in the presence of a second prey species. Ecol Entomol 37:529–535

    Article  Google Scholar 

  • Weintraub P, Pivonia S, Steinberg S (2011) How many Orius laevigatus are needed for effective western flower thrips, Frankliniella occidentalis, management in sweet pepper? Crop Prot 30:1443–1448

    Article  Google Scholar 

  • Wimmer D, Hoffmann D, Schausberger P (2008) Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci Technol 18:533–542

    Article  Google Scholar 

  • Xiao Y, Avery P, Chen J, McKenzie C, Osborne L (2012a) Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biol Control 63:279–286

    Article  Google Scholar 

  • Xiao YF, Osborne LS, Chen JJ, McKenzie CL (2012b) Functional responses and prey-stage preferences of a predatory gall midge and two predacious mites with twospotted spider mites, Tetranychus urticae, as host. J Insect Sci 13(8):1–12

    Article  Google Scholar 

  • Xu X, Enkegaard A (2010) Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. J Insect Sci 10(149):1–11

    Article  Google Scholar 

  • Yousef AEA, El-Keifl AH, Metwally AM (1982) Zur Wirkung von Temperatur und Photoperiode auf die Entwicklung, Ernährung und Eiablage der Raubmilbe Amblyseius swirskii Ath.-Henr. (Acari, Gamasida, Phytoseiidae). Anz Schädlingsk Pflanzensch Umweltsch 55:107–109

  • Zannou ID, Hanna R (2011) Clarifying the identity of Amblyseius swirskii and Amblyseius rykei (Acari: Phytoseiidae): are they two distinct species or two populations of one species? Exp Appl Acarol 53:339–347

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Knapp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, F.J., Knapp, M., van Houten, Y.M. et al. Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent?. Exp Appl Acarol 65, 419–433 (2015). https://doi.org/10.1007/s10493-014-9873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9873-0

Keywords

Navigation