Skip to main content
Log in

Functional response of Euseius concordis to densities of different developmental stages of the cassava green mite

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Both prey density and developmental stage of pests and natural enemies are known to influence the effectiveness of biological control. However, little is known about the interaction between prey density and population structure on predation and fecundity of generalist predatory mites. Here, we evaluated the functional response (number of prey eaten by predator in relation to prey density) of adult females and nymphs of the generalist predatory mite Euseius concordis to densities of different developmental stages of the cassava green mite Mononychellus tanajoa, as well as the fecundity of adult females of the predator. We further assessed the instantaneous rate of increase, based on fecundity and mortality, of E. concordis fed on eggs, immatures and adults of M. tanajoa. Overall, nymphs and adults of E. concordis feeding on eggs, immatures and females of M. tanajoa had a type III functional response curve suggesting that the predator increased prey consumption rate as prey density increased. Both nymphs and adult females of the predator consumed more eggs than immatures of M. tanajoa from the density of 20 items per leaf disc onwards, revealing an interaction between prey density and developmental stage in the predatory activity of E. concordis. In addition, population growth rate was higher when the predator fed on eggs and immatures in comparison with females. Altogether our results suggest that E. concordis may be a good candidate for the biological control of M. tanajoa populations. However, the efficiency of E. concordis as a biological control agent of M. tanajoa is contingent on prey density and population structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bellotti A, Herrera Campo BV, Hyman G (2012) Cassava production and pest management: present and potential threats in a changing environment. Trop Plant Biol 5:39–72

    Article  Google Scholar 

  • Blackwood JS, Schausberger P, Croft BA (2001) Prey-stage preference in generalist and specialist phytoseiid mites (Acari: Phytoseiidae) when offered Tetranychus urticae (Acari: Tetranychidae) eggs and larvae. Environ Entomol 30:1103–1111

    Article  Google Scholar 

  • Bruce-Oliver SJ, Hoy MA, Yaninek JS (1996) Effect of some food sources associated with cassava in Africa on the development, fecundity and longevity of Euseius fustis (Pritchard and Baker) (Acari: Phytoseiidae). Exp Appl Acarol 20:73–85

    Article  Google Scholar 

  • Cock JH (1982) Cassava: a basic energy source in the tropics. Science 218:755–762

    Article  PubMed  CAS  Google Scholar 

  • Croft BA, Blackwood JS, McMurtry JA (2004) Classifying life-style types of phytoseiid mites: diagnostic traits. Exp Appl Acarol 33:247–260

    Article  Google Scholar 

  • Cruz WP, Sarmento RA, Teodoro AV, Pedro Neto M, Ignácio M (2013) Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated. Exp Appl Acarol 60:509–519

    Article  PubMed  Google Scholar 

  • Cuellar ME, Calatayud PA, Melo EL, Smith L, Bellotti AC (2001) Consumption and oviposition rates of six phytoseiid species feeding on eggs of the cassava green mite Mononychellus tanajoa (Acari: Tetranychidae). Fla Entomol 84:602–607

    Article  Google Scholar 

  • FAO—Food and Agriculture Organization of the United Nations (2013a) Cassava’s huge potential as 21st Century crop. http://www.fao.org/ag/save-and-grow/cassava/en/1/index.html. Accessed 15 July 2013

  • FAO—Food and Agriculture Organization of the United Nations (2013b) Why cassava?. http://www.fao.org/ag/agp/agpc/gcds/. Accessed 15 July 2013

  • Hassell MP, Comins HM (1978) Sigmoid functional responses and population stability. Theor Popul Biol 14:62–67

    Article  PubMed  CAS  Google Scholar 

  • Henry G, Hershey C (2002) Cassava in South America and the Caribbean. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Oxon, pp 17–40

    Google Scholar 

  • Holling CS (1961) Principles of insect predation. Ann Rev Entomol 6:163–182

    Article  Google Scholar 

  • Krebs JR, Erichsen JT, Webber MI, Charnov EL (1977) Optimal prey selection in the great tit (Parus major). Anim Behav 25:30–38

    Article  Google Scholar 

  • Lemos F, Sarmento RA, Pallini A, Dias CR, Sabelis MW, Janssen A (2010) Spider mite web mediates antipredator behaviour. Exp Appl Acarol 52:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • McMurtry JA (1992) Dynamics and potential impact of ‘generalist’ phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp Appl Acarol 14:371–382

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  PubMed  CAS  Google Scholar 

  • McMurtry JA, Rodriguez JG (1987) Nutritional ecology of phytoseiidae mites. In: Slansky F, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York, pp 609–644

    Google Scholar 

  • Moraes GJ, Flechtmann CHW (2008) Manual de Acarologia: acarologia básica e ácaros de plantas cultivadas no Brasil. Holos, Ribeirão Preto

    Google Scholar 

  • Oliveira H, Janssen A, Pallini A, Venzon M, Fadini M, Duarte V (2007) A phytoseiidae predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biol Control 42:105–109

    Article  Google Scholar 

  • Onzo A, Hanna R, Zannou I, Sabelis MW, Yaninek JS (2003) Dynamics of refuge use: diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos 101:59–69

    Article  Google Scholar 

  • Onzo A, Hanna R, Sabelis MW, Yaninek JS (2005) Temporal and spatial dynamics of an exotic predatory mite and its herbivorous mite prey on cassava in Benin, West Africa. Environ Entomol 34:866–874

    Article  Google Scholar 

  • Rahman VJ, Babu A, Roobakkumar A, Perumalsamy K (2012) Functional and numerical responses of the predatory mite, Neoseiulus longispinosus, to the red spider mite, Oligonychus coffeae, infesting tea. J Insect Sci 12:1–12

    Article  Google Scholar 

  • Rêgo AS, Costa EC, Silva EA, Teodoro AV (2012) Comparative biology and growth rate of the mites Mononychellus tanajoa and Euseius ho (Acari) on cassava. Rev Colomb Entomol 38:243–246

    Google Scholar 

  • Reis PR, Teodoro AV, Pedro Neto M (2000) Predatory activity of phytoseiid mites on the developmental stages of coffee ringspot mite (Acari: Phytoseiidae: Tenuipalpidae). An Soc Entomol Bras 29:547–553

    Article  Google Scholar 

  • Sabelis MW (1990) How to analyse prey preference when prey density varies? A new method to discriminate between effects of gut fullness and prey type composition. Oecologia 82:289–298

    Article  Google Scholar 

  • Sabelis MW, Bakker FM (1992) How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae. Exp Appl Acarol 16:203–225

    Article  Google Scholar 

  • Saito Y (1983) The concept of “life types” in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae. Acarologia 24:377–392

    Google Scholar 

  • Sarmento RA, Pallini A, Venzon M, Souza OFF, Molina-Rugama AJ, Oliveira CL (2007) Functional response of the predator Eriopsis connexa (Coleoptera: Coccinellidae) to different prey types. Braz Arch Biol Technol 50:121–126

    Article  Google Scholar 

  • Sarmento RA, Rodrigues DM, Faraji F, Erasmo EAL, Lemos F, Teodoro AV, Kikuchi WT, Santos GR, Pallini A (2011) Suitability of the predatory mites Iphiseiodes zuluagai and Euseius concordis in controlling Polyphagotarsonemus latus and Tetranychus bastosi on Jatropha curcas plants in Brazil. Exp Appl Acarol 53:203–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk D, Bacher S (2002) Functional response of a generalist predator to one of its prey species in the field. J Anim Ecol 71:524–531

    Article  Google Scholar 

  • StatSoft Inc. (1984–2004) Statistica for Windows (Software-system for data-analyses). Version 7.0. Tulsa, USA

  • Suja G, John SK, Sreekumar J, Srinivas T (2010) Short-duration cassava genotypes for crop diversification in the humid tropics: growth dynamics, biomass, yield and quality. J Sci Food Agric 90:188–198

    Article  PubMed  CAS  Google Scholar 

  • Systat Software Inc (2008) SigmaPlot for Windows (development and testing procedures). Version 11.0. Germany

  • Venzon M, Jassen A, Pallini A, Sabelis MW (2000) Diet of a polyphagous predator affects refuge seeking of its thrips prey. Anim Behav 60:369–375

    Article  PubMed  Google Scholar 

  • Venzon M, Lemos F, Sarmento RA, Rosado MC, Pallini A (2009) Predação por coccinelídeos e crisopídeo influenciada pela teia de Tetranychus evansi. Pesq Agropec Bras 44:1086–1091

    Article  Google Scholar 

  • Walthall WK, Stark JD (1997) Comparison of two population-level ecotoxicological endpoints: the intrinsic (rm) and instantaneous (ri) rates of increase. Environ Toxicol Chem 16:1068–1073

    CAS  Google Scholar 

  • Wiedenmann RN, Smith JW (1997) Attributes of the natural enemies in ephemeral crop habitats. Biol Control 10:16–22

    Article  Google Scholar 

Download references

Acknowledgments

We thank Esther A. Silva for the identification of the predatory mite and Anilde Maciel for help with experiments. Funding was provided by PNPD/CAPES (PNPD0132080), CNPq (474994/2009-0) and FAPEMA (APP-00991/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adenir V. Teodoro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, É.C., Teodoro, A.V., Rêgo, A.S. et al. Functional response of Euseius concordis to densities of different developmental stages of the cassava green mite. Exp Appl Acarol 64, 277–286 (2014). https://doi.org/10.1007/s10493-014-9823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9823-x

Keywords

Navigation