Skip to main content
Log in

Obtaining molecular data for all life stages of Typhlodromus (Typhlodromus) exhilaratus (Mesostigmata: Phytoseiidae): consequences for species identification

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Several species of the family Phytoseiidae are known to control mite pests in many crops worldwide. However, biological control success greatly depends on the accurate identification of these predatory mites. Species diagnostics is essentially based on the morphological characters of females. Thus, when only immature stages and/or males are collected, their identification is poorly supported. Molecular tools could be of great help to overcome these difficulties, as molecular sequences are assumed to be identical for the life stage considered. However, one of the essential points is to extract a sufficient DNA amount from a single specimen of immature stages (eggs, protonymphs, deutonymphs) and males (less than 300 μm in length) to amplify and sequence DNA. The markers used were two mitochondrial DNA fragments (12S rRNA and Cytb mtDNA) and the species studied were Typhlodromus (Typhlodromus) exhilaratus and T. (T.) phialatus, two cryptic species, reported to control mite pests in crops of southern Europe and commonly found on the same plants. Despite a low quantity of DNA extracted, particularly for the egg, larva and protonymph stages, DNA was amplified and sequences were obtained from all the life stages considered with the two mtDNA fragments. Sequences from all the developmental stages of T. (T.) exhilaratus were identical and well differentiated from those of its sister-species. However, contaminations were observed especially for eggs and DNA amplified with the Cytb mt marker. Utility of the present results are discussed and protocol improvements are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson JM, Ammerman NC, Norris DE (2004) Molecular differentiation of Metastriate tick immatures. Vector-Borne Zoon Dis 4:334–342

    Article  Google Scholar 

  • Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B 360:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Barbar Z, Tixier M-S, Cheval B, Kreiter S (2006) Effects of agroforestry on phytoseiid mite communities (Acari: Phytoseiidae) in vineyards in the South of France. Exp Appl Acarol 40:175–188

    Article  PubMed  Google Scholar 

  • Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    Article  CAS  Google Scholar 

  • Berrilli F, D’Amelio S, Rossi L (2002) Ribosomal and mitochondrial DNA sequence variation in Sarcoptes mites from different hosts and geographical regions. Parasitol Res 88:772–777

    Article  PubMed  CAS  Google Scholar 

  • Blaxter ML (2004) The promise of a DNA taxonomy. Phil Trans R Soc London 359:669–679

    Article  CAS  Google Scholar 

  • Bon MC, Hoelmer K, Coutinot D, Ramualde N (2008) PCR-based, rapid diagnosis of parasitism of Lygus spp. (Hemiptera: Miridae) by Peristenus relictus (Hymenoptera: Braconidae). Biocontrol Sci Technol 18:505–516

    Article  Google Scholar 

  • Carew ME, Goodisman MAD, Hoffmann AA (2004) Species status and population genetic structure of grapevine eriophyoid mites. Entomol Exp Appl 111:87–96

    Article  Google Scholar 

  • Carew M, Schiffer M, Umina P, Weeks A, Hoffmann A (2009) Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull Entomol Res 99:479–486

    Article  PubMed  CAS  Google Scholar 

  • Castagnoli M, Ligurori M, Nanneli R (1997) La popolazioni degli acari nei vigneti inerbiti del chianti: confronto tra cultivar. Redia 80:15–31

    Google Scholar 

  • Chant DA, McMurtry JA (1994) A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Int J Acarol 20:223–310

    Article  Google Scholar 

  • Chant DA, McMurtry JA (2007) Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidaeof the world (Acari: Mesostigmata). Indira Publishing House, Michigan, p 220

    Google Scholar 

  • Dabert J, Ehrnsberger R, Dabert M (2008) Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa 1719:41–52

    Google Scholar 

  • Dergousoff SJ, Chilton NB (2007) Differentiation of three species of ixodid tick, Dermacentor andersoni, D. variabilis and D. albipictus, by PCR-based approaches using markers in ribosomal DNA. Mol Cell Probes 21:343–348

    Article  PubMed  CAS  Google Scholar 

  • Dermauw W, Vanholme B, Van Leeuwen T (2010) Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome 53(4):285–301

    Article  PubMed  CAS  Google Scholar 

  • Desloire S, Valiente Moro C, Chauve C, Zenner L (2006) Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae). Vet Res 37:725–732

    Article  PubMed  CAS  Google Scholar 

  • Dittrich-Schroder G, Wingfield MJ, Klein H, Slippers B (2012) DNAextraction techniques forDNA barcoding of minute gall-inhabiting wasps. Mol Ecol Res 12:109–115

    Article  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2007) Geneious V3.5.4, available from: http://www.geneious.com/. Accessed in July 2010

  • Duso C (1992) Role of Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. J Appl Entomol 114(5):455–462

    Article  Google Scholar 

  • Edwards DD, Deatherage DE, Ernsting BR (2004) Random amplified polymorphic DNA analysis of kinship within host-associated populations of the symbiotic water mite Unionicola foili (Acari: Unionicolidae). Exp Appl Acarol 34:67–77

    Article  PubMed  CAS  Google Scholar 

  • Geraci CJ, Al-Saffar MA, Zhou X (2011) DNA barcoding facilitates description of unknown faunas: a case study on Trichoptera in the headwaters of the Tigris River, Iraq. J North Am Benthol Soc 30(1):163–173. doi:10.1899/10-011

    Google Scholar 

  • Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14:3247–3266

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, De Waard JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Stoeckle LY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. PloS Biology 2:10e312

    Google Scholar 

  • Jeyaprakash A, Hoy MA (2002) Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biol Control 25:136–142

    Article  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2007) The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391:264–274

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2010) A DNA extraction procedure that allows mite specimens to be slide mounted: phytoseiid species evaluated as a model. Exp Appl Acarol 52(2):131–140

    Article  PubMed  Google Scholar 

  • Kanouh M, Tixier MS, Guichou S, Cheval B, Kreiter S (2010a) Two synonymy cases within the genus Neoseiulella (Acari: Phytoseiidae): is the molecular evidence so evident? Biol J Linn Soc 101:323–344

    Article  Google Scholar 

  • Kanouh M, Tixier M-S, Okassa M, Kreiter S (2010b) Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae). Zool Scr 39:450–461. doi:10.1111/j.1463-6409.2010.00439.x

  • Klompen H, Lekveishvili M, Black WC (2007) Phylogeny of parasitiform mites (Acari) based on rRNA. Mol Phyl Ecol 43:936–951

    Article  CAS  Google Scholar 

  • Konakandla B, Park Y, Margolies D (2006) Whole genome amplication of Chelex-extracted DNA from a single mite: a method for studying genetics of the predatory mite Phytoseiulus persimilis. Exp Appl Acarol 40:241–247

    Article  PubMed  CAS  Google Scholar 

  • Kreiter S, Tixier MS, Auger P, Muckensturm N, Sentenac G, Doublet B, Weber M (2000) Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologia 41(1–2):77–96

    Google Scholar 

  • Kreiter S, Tixier MS, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite, Kampimodromus aberrans, in habitats surrounding vineyards. Environ Entomol 31(4):648–660

    Article  Google Scholar 

  • Laumann L, Norton RA, Weigmann G, Scheu S, Maraun M, Heethoff M (2007) Speciation in the parthenogenetic oribatid mite genus Tectocepheus (Acari, Oribatida) as indicated by molecular phylogeny. Pedobiologia 51:111–122

    Article  CAS  Google Scholar 

  • Lekveishvili M, Klompen H (2004) Phylogeny of infraorder Sejina (Acari: Mesostigmata). Zootaxa 629:1–19

    Google Scholar 

  • Levkanicova Z, Bocak L (2009) Identification of net-winged beetle larvae (Coleoptera: Lycidae) using three mtDNA fragments: a comparison of their utility. Syst Entomol 34(2):210–221. doi:10.1111/j.1365-3113.2008.00457

    Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.72. http://mesquiteproject.org. Accessed in July 2010

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Ann Rev Entomol 42:291–321

    Article  CAS  Google Scholar 

  • Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae). Syst Entomol 30:499–509

    Article  Google Scholar 

  • Mitchell A, Maddox C (2010) Bark beetles (Coleoptera: Curculionidae: Scolytinae) of importance to the Australian macadamia industry: an integrative taxonomic approach to species diagnostics. Aust J Entomol 49(2):104–113

    Article  Google Scholar 

  • Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494

    Google Scholar 

  • Navajas N, Navia D (2010) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Exp Appl Acarol 51:257–271

    Article  PubMed  CAS  Google Scholar 

  • Okassa M, Tixier M-S, Cheval B, Kreiter S (2009) Molecular and morphological evidence for new species status within the genus Euseius (Acari: Phytoseiidae). Can J Zool 87:689–698

    Article  CAS  Google Scholar 

  • Okassa M, Tixier M-S, Kreiter S (2010) Morphological and molecular diagnostic of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae). Exp Appl Acarol 52:291–303

    Article  PubMed  Google Scholar 

  • Okassa M, Kreiter S, Guichou S, Tixier M-S (2011) Molecular and morphological boundaries of the predator Neoseiulus californicus McGregor (Acari: Phytoseiidae). Biol J Lin Soc 104:393–406

    Article  Google Scholar 

  • Pakin P, Vink CJ (2009) Testing compatibility between molecular and morphological techniques for arthropod systematics: a minimally destructive DNA extraction method that preserves morphological integrity, and the effect of lactic acid on DNA quality. J Insect Conserv 13:453–457

    Google Scholar 

  • Paquin P, Hedin M (2004) The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Mol Ecol 13:3239–3255

    Article  PubMed  CAS  Google Scholar 

  • Pruvost M, Grange T, Geigl EV (2005) Minimizing DNA contamination by using UNG-coupled quantitative real-time PCR on degraded DNA samples: application to ancient DNA studies. Biotechniques 38(4):569–575

    Article  PubMed  CAS  Google Scholar 

  • Ragusa S (1986) A five year study on population fluctuations of phytoseiids mites in a citrus orchard in Sicily. Acarologia 27:193–201

    Google Scholar 

  • Schausberger P, Walzer A (2001) Combined versus single species release of predaceous mites: predator–predator interactions and pest suppression. Biol Control 20(3):269–278

    Article  Google Scholar 

  • Stoeckle M (2003) Taxonomy, DNA, and the bar code of life. Bioscience 53:796–797

    Article  Google Scholar 

  • Swofford DL (2002) PAUP—phylogenetic analysis using parsimony (and other methods), Ver. 4. 0. Beta. [computer software]. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thomsen PF, Elias S, Thomas M, Gilbert P, Haile J, Munch K, Kuzmina S, Froese D, Sher A, Holdaway RN, Willerslev E (2009) Non-destructive sampling of ancient insect DNA. PLoS ONE 4(4):e5048

    Article  PubMed  Google Scholar 

  • Tixier M-S, Kreiter S, Auger P, Weber M (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): influence of wind and crop environment. Exp Appl Acarol 22:523–542

    Article  Google Scholar 

  • Tixier M-S, Kreiter S, Cheval B, Auger P (2003) Morphometric variation between populations of Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae): implications for the taxonomy of the genus. Inv Syst 17:349–358

    Article  Google Scholar 

  • Tixier M-S, Kreiter S, Barbar Z, Ragusa S, Cheval B (2006a) The status of two cryptic species: Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy. Zool Scr 35:115–122

    Article  Google Scholar 

  • Tixier M-S, Kreiter S, Cheval B (2006b) Immigration of phytoseiid mites from surrounding uncultivated areas in a newly planted vineyard. Exp Appl Acarol 39:227–242

    Article  PubMed  Google Scholar 

  • Tixier M-S, Kreiter S, Ferragut F, Cheval B (2006c) The suspected synonymy of Kampimodromus hmiminai McMurtry and K. adrianae (Acari: Phytoseiidae): morphological and molecular investigations. Can J Zool 84:1216–1222

    Article  CAS  Google Scholar 

  • Tixier M-S, Kreiter S, Croft BA, Cheval B (2008) Kampimodromus aberrans (Acari: Phytoseiidae) from USA: morphological and molecular assessment of its identity. Bull Entomol Res 98:125–134

    Article  PubMed  Google Scholar 

  • Tixier M-S, Ferrero M, Okassa M, Guichou S, Kreiter S (2010) On the specific identity of specimens of Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) showing different feeding behaviours: morphological and molecular analyses. Bull Entomol Res 100(5):569–579

    Article  PubMed  CAS  Google Scholar 

  • Tixier M-S, Hernandes-Akashi F, Guichou S, Kreiter S (2011a) The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public Genbank database. Inv Syst 20:389–406

    Article  Google Scholar 

  • Tixier MS, Tsolakis H, Ragusa S, Poinso A, Ferrero M, Okassa M, Kreiter S (2011b) An integrative taxonomical approach demonstrates the synonymy between Cydnodromus idaeus and C. picanus (Acari: Phytoseiidae). Inv Syst 25:273–281

    Article  Google Scholar 

  • Tixier MS, Okassa M, Kreiter S (2012) An integrative morphological and molecular diagnostics for Typhlodromus pyri (Acari: Phytoseiidae). Zool Scr 41:68–78

    Article  Google Scholar 

  • Watts PC, Thompson DJ, Allen KA, Kemp SJ (2007) How useful is DNA extracted from the legs of archived insects for microsatellite-based population genetic analyses? J Insect Conserv 11:195–198

    Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B 272:3–16

    Article  PubMed  CAS  Google Scholar 

  • Woide D, Zink A, Thalhammer S (2010) Technical note: PCR analysis of minimum target amount of ancient DNA. Am J Phys Anthropol 142:321–327

    PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Frédérique Cerqueira (IFR119 «Montpellier Environnement Biodiversité») for her help during the sequencing phase. We also thank Jean-Francois Martin and Maxime Galan for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-S. Tixier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okassa, M., Kreiter, S. & Tixier, MS. Obtaining molecular data for all life stages of Typhlodromus (Typhlodromus) exhilaratus (Mesostigmata: Phytoseiidae): consequences for species identification. Exp Appl Acarol 57, 105–116 (2012). https://doi.org/10.1007/s10493-012-9548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-012-9548-7

Keywords

Navigation