Skip to main content
Log in

Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The phytophagous mite Aceria guerreronis Keifer is an important pest of coconut worldwide. A promising method of control for this pest is the use of predatory mites. Neoseiulus baraki (Athias-Henriot) and Proctolaelaps bickleyi Bram are predatory mites found in association with A. guerreronis in the field. To understand how these predators respond to olfactory cues from A. guerreronis and its host plant, the foraging behavior of the predatory mites was investigated in a Y-tube olfactometer and on T-shaped arenas. The predators were subjected to choose in an olfactometer: (1) isolated parts (leaflet, spikelet or fruit) of infested coconut plant or clean air stream; (2) isolated parts of non-infested or infested coconut plant; and (3) two different plant parts previously shown to be attractive. Using T-shaped arenas the predators were offered all possible binary combinations of discs of coconut fruit epidermis infested with A. guerreronis, non-infested discs or coconut pollen. The results showed that both predators were preferred (the volatile cues from) the infested plant parts over clean air. When subjected to odours from different infested or non-infested plant parts, predators preferred the infested parts. Among the infested plant parts, the spikelets induced the greatest attraction to predators. On the arenas, both predators preferred discs of coconut fruits infested with A. guerreronis over every other alternative. The results show that both predators are able to locate A. guerreronis by olfactory stimuli. Foraging strategies and implications for biological control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arimura GI, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    PubMed  CAS  Google Scholar 

  • de Moraes GJ, Zacarias MS (2002) Use of predatory mites for the control of eriophyid mites. In: Fernando LCP, de Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 79–88

    Google Scholar 

  • Dicke M (1988) Prey preference of the phytoseiid mite Typhlodromus pyri 1–Response to volatile kairomones. Exp Appl Acarol 4:1–13

    Article  CAS  Google Scholar 

  • Dicke M (1994) Local and systemic production of volatile herbivore-induced terpenoids: their role in plant–carnivore mutualism. J Plant Physiol 143:465–472

    CAS  Google Scholar 

  • Dicke M (1999) Evolution of induced indirect defense of plants. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 62–88

    Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165

    Article  Google Scholar 

  • Dicke M, Sabelis MW, Groeneveld A (1986) Vitamin A deficiency modifies response of the predatory mite Amblyseius potentillae to volatile kairomone of twospotted mite, Tetranychus urticae. J Chem Ecol 12:1389–1396

    Article  CAS  Google Scholar 

  • Dicke M, van Baarlen P, Wessels R, Dijkman H (1993a) Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor. J Chem Ecol 19:581–599

    Article  CAS  Google Scholar 

  • Dicke M, van Baarlen P, Wessels R, Dijkman H (1993b) Systemic production of herbivore-induced synomones by lima bean plants helps solving a foraging problem of the herbivore’s predators. Proc Exp Appl Entomol 4:39–44

    Google Scholar 

  • Dicke M, Takabayashi J, Posthumus MA, Schüte C, Krips OE (1998) Plant-phytoseiid interactions mediated by herbivoreinduced plant volatiles: variation in production of cues and in responses of predatory mites. Exp Appl Acarol 22:311–333

    Article  CAS  Google Scholar 

  • Dicke M, De Boer JG, Höfte M, Rocha-Granados MC (2003) Mixed blends of herbivore-induced plant volatiles and foraging success of carnivorous arthropods. Oikos 101:38–48

    Article  Google Scholar 

  • Domingos CA, Melo JWS, Gondim MGC Jr, de Moraes GJ, Rachid H, Lawson-Balagbo LM, Peter S (2010) Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae). Exp Appl Acarol 50:201–215

    Article  PubMed  Google Scholar 

  • Doreste SE (1968) El ácaro de la flor del cocotero (Aceria guerreronis Keifer) en Venezuela. Agron Trop 18:370–386

    Google Scholar 

  • Fernando LCP, Wickramananda IR, Aratchige NS (2002) Status of coconut mite, Aceria guerreronis in Sri Lanka. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the International Workshop on Coconut Mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 1–8

    Google Scholar 

  • Fernando LCP, Waidyarathne KP, Perera KFG, De Silva PHPR (2010) Evidence for suppressing coconut mite, Aceria guerreronis by inundative release of the predatory mite, Neoseiulus baraki. Biol Control 53:108–111

    Article  Google Scholar 

  • Galvão AS, Gondim MGC Jr, Michereff SJ (2008) Escala diagramática de Dano de Aceria guerreronis Keifer (Acari: Eriophyidae) em coqueiro. Neotrop Entomol 37:723–728

    Article  PubMed  Google Scholar 

  • Haq MA, Sumangala K, Ramani N (2002) Coconut mite invasion, injury and distribution. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 41–49

    Google Scholar 

  • Hislop RG, Prokopy RJ (1981) Mite predator responses to prey and predator-emitted stimuli. J Chem Ecol 7:895–904

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Jagers op Akkerhuis G, Sabelis MW, Tjallingii WF (1985) Ultrastructure of chemoreceptors on the pedipalpis and first tarsi of Phytoseiulus persimilis. Exp Appl Acarol 1:235–251

    Article  Google Scholar 

  • Janssen A, Bruin J, Jacobs G, Schraag R, Sabelis MW (1997) Predators use odours to avoid prey patches with conspecifics. J Anim Ecol 66:223–232

    Article  Google Scholar 

  • Janssen A, Pallini A, Venzon M, Sabelis MW (1999) Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomol Exp Appl 92:73–82

    Article  Google Scholar 

  • Kumar PS, Singh SP (2000) Hirsutella thompsonii. The best biological control option for the management of the coconut mite in India. Indian Coconut J 31:11–15

    Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2007a) Life history of the predatory mites Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidates for biological control of Aceria guerreronis. Exp Appl Acarol 43:49–61

    Article  PubMed  CAS  Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2007b) Refuge use by the coconut mite Aceria guerreronis: fine scale distribution and association with other mites under the perianth. Biol Control 43:102–110

    Article  Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2008a) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96

    Article  PubMed  CAS  Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2008b) Compatibility of Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidate biocontrol agents of the coconut mite Aceria guerreronis: spatial niche use and intraguid predation. Exp Appl Acarol 45:1–13

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Tabayashi J (2001) Production of herbivore-induced plant volatiles and their attractiveness to Phytoseiulus persimilis (Acari: Phytoseiidae) with changes of Tetranychus urticae (Acari: Tetranychidae) density on plant. Appl Entomol Zool 36:47–52

    Article  Google Scholar 

  • Maeda T, Tabayashi J, Yano S, Takafuji A (2000) The effects of rearing coditions on the laboratory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Appl Entomol Zool 35:345–351

    Article  Google Scholar 

  • Moore D, Howard FW (1996) Coconuts. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology natural enemies and control. Elsevier, Amsterdam, pp 561–570

    Chapter  Google Scholar 

  • Navia D, Moraes GJ, de Querino RB (2006) Geographic variation in the coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae): a geometric morphometric analysis. Int J Acarol 32:301–314

    Article  Google Scholar 

  • Oliveira H, Fadini M, Venzon M, Rezende D, Rezende F, Pallini A (2009) Evaluation of the predatory mite Phytoseiulus macropilis (Acari: Phytoseiidae) as a biological control agent of the two-spotted spider mite on strawberry plants under greenhouse conditions. Exp Appl Acarol 47:275–283

    Article  PubMed  Google Scholar 

  • Overmeer WPJ, Van Zon AQ (1983) The effect of different kinds of food on induction of diapause in the predaceous mite Amblyseius potentillae. Entomol Exp Appl 33:27–30

    Article  Google Scholar 

  • Passos EEM (1994) Ecofisiologia do coqueiro. In: Ferreira JMS, Warwick DRN, Siqueira LA (eds) A cultura do coqueiro no Brasil. EMBRAPA-SPI, Aracaju, pp 74–86

    Google Scholar 

  • Persley GJ (1992) Replanting the tree of life: towards an international agenda for coconut palm research. CAB, Wallingford, p 156

    Google Scholar 

  • Price PW, Bouton CE, McPheron BA, Thompson JN, Weis AE (1980) Interaction among three levels: influence of plants on interactions between insects herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Ramaraju K, Natarajan K, Babu PCS, Palnisamy S, Rabindra RJ (2002) Studies on coconut eriophyid mite, Aceria guerreronis Keifer in Tamil Nadu, Índia. In: Fernando LCP, de Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 13–31

    Google Scholar 

  • Reis AC, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P, Lawson-Balagbo LM, Barros R (2008) Population dynamics of Aceria guerreronis Keifer (Acari: Eriophyidae) and associated predators on coconut fruits in northeastern Brazil. Neotrop Entomol 37:457–462

    Article  PubMed  Google Scholar 

  • Sabelis MW, Dicke M (1985) Long-range dispersal and searching behaviour. In: Helle W, Sabelis MW (eds) Spider mites: their biology natural enemies and control. Elsevier, Amsterdam, pp 141–160

    Google Scholar 

  • Sabelis MW, Janssen A (1993) Evolution of life-history patterns in the Phytoseiidae. In: Wrensch DL, Ebberts MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York, pp 70–99

    Google Scholar 

  • Sabelis MW, van de Baan HE (1983) Location of distant spider mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol Exp Appl 33:303–314

    Article  Google Scholar 

  • Sabelis MW, Afman BP, Slim PJ (1984a) Location of distant spider mite colonies by Phytoseiulus persimilis: localization and extraction of a kairomone. In: Griffith DA, Bowman CB (eds) Proceedings of the 6th International Congress of Acarology Chichester, Ellis Horwood, pp 431–440

  • Sabelis MW, Vermaat JE, Groeneveld A (1984b) Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odour gradients of a kairomone. Physiol Entomol 9:437–446

    Article  CAS  Google Scholar 

  • Sabelis MW, van Baalen M, Bakker FM, Bruin J, Drukker B, Egas M, Janssen ARM, Lesna IK, Pels B, Van Rijn P, Scutareanu P (1998) The evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Oxford, Blackwell Science, pp 109–166

    Google Scholar 

  • Sabelis MW, Janssen A, Kant MR (2001) The enemy of my enemy is my ally. Science 291:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1999–2001) SAS/STAT User’s guide, version 8.02, TS level 2MO. SAS Institute Inc., Cary, NC

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New York, p 880

    Google Scholar 

  • Takabayashi J, Dicke M, Takahashi S, Posthumus MA, van Beek TA (1994) Leaf age affects composition of herbivore-induced synomones and attraction of predatory mites. J Chem Ecol 20:373–386

    Article  CAS  Google Scholar 

  • Tumlinson JH, Turlings TCJ, Lewis WJ (1993) Semio-chemically mediated foraging behavior in beneficial parasitic insects. Arch Insect Biochem Physiol 22:385–391

    Article  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Rose U, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174

    Article  PubMed  CAS  Google Scholar 

  • Van Zandt PA, Agrawal AA (2004) Specificity of induced plant responses to specialist herbivores of the common milkweed Asclepias syriaca. Oikos 104:401–409

    Article  Google Scholar 

  • Visser JH (1986) Host odour perception in phytophagus insects. Annu Rev Entomol 31:121–144

    Article  Google Scholar 

Download references

Acknowledgments

The National Council of Scientific and Technological Development (CNPq), the Pernambuco State Foundation for Research Aid (FACEPE) and the Coordination for the Improvement of Higher Education- Personnel (CAPES) are thanked for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Wagner S. Melo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, J.W.S., Lima, D.B., Pallini, A. et al. Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis . Exp Appl Acarol 55, 191–202 (2011). https://doi.org/10.1007/s10493-011-9465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-011-9465-1

Keywords

Navigation