Skip to main content
Log in

Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Studies on artificial laboratory selections with milbemectin, stability of milbemectin resistance and possible cross-resistance with abamectin were carried out with Tetranychus urticae Koch to provide basic information for a milbemectin resistance management program. Selections for resistance and susceptibility to milbemectin were performed in a population of T. urticae, collected from a commercial chrysanthemum field in the State of São Paulo, Brazil. After six selections for resistance and five selections for susceptibility, susceptible (S) and resistant (R) strains of T. urticae to milbemectin were obtained. The resistance ratio (R/S) at the LC50 reached 409-fold value. The stability of milbemectin resistance was also studied under laboratory conditions, using a population with initial frequency of 75% of resistant mites. The frequencies of milbemectin resistance were evaluated monthly for a period of 7 months. In order to observe possible correlation between milbemectin and abamectin resistance, the frequencies of abamectin resistance were also evaluated for that population, during the same period. The frequency of milbemectin resistance decreased from 75 to 14.5%, while the percentage of abamectin resistant mites decreased from 57 to 9.1%, in 7 months. The frequencies of milbemectin and abamectin resistance were also evaluated in 25 field populations of T. urticae, collected from several crops in the State of São Paulo. The frequencies of milbemectin resistance varied from 4.1 to 89.5%, and of abamectin, from 7.0 to 90.5%. A positive and significant correlation was observed between the frequencies of milbemectin and abamectin resistance, indicating positive cross-resistance between these acaricides. The results indicate that abamectin should be avoided for managing milbemectin resistance in T. urticae. This is the first report on milbemectin resistance in T. urticae in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • AGROFIT (2009) Sistema de Agrotóxicos Fitossanitários, do Ministério da Agricultura, Pecuária e Abastecimento. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Cited 09 Feb 2009

  • Asahara M, Uesugi R, Osakabe MH (2008) Linkage between one of the polygenic hexythiazox resistance genes and an etoxazole resistance gene in the twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 101:1704–1710

    Article  CAS  PubMed  Google Scholar 

  • Ayres M, Ayres M Jr, Ayres DL, dos Santos AS (2003) Bio Estat 3.0. Aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Civil Mamirauá/CNPq, Belém/Brasília

    Google Scholar 

  • Beers EH, Riedl H, Dunley JE (1998) Resistance to abamectin and reversion to susceptibility to fenbutatin oxide in spider mite (Acari: Tetranychidae) populations in the Pacific Northwest. J Econ Entomol 91:352–360

    Google Scholar 

  • Bloomquist JR (2001) GABA and glutamate receptors as biochemical sites for insecticide action. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, New York, pp 17–41

    Google Scholar 

  • Campos FJ, Omoto C (2006) Estabilidade da resistência de Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) a hexythiazox em pomares de citros. Neotrop Entomol 35:840–848

    Article  PubMed  Google Scholar 

  • Campos F, Krupa DA, Dybas RA (1996) Susceptibility of populations of twospotted spider mites (Acari: Tetranychidae) from Florida, Holland and the Canary Islands to abamectin and characterization of abamectin resistance. J Econ Entomol 89:594–610

    CAS  Google Scholar 

  • Clark JM, Scott JG, Campos F, Bloomquist JR (1995) Resistance to avermectins: extent, mechanism, and management implications. Annu Rev Entomol 40:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cranham JE, Helle W (1985) Pesticide resistance in Tetranychidae. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies, and control, vol 1B. Elsevier, Amsterdam, pp 405–421

    Google Scholar 

  • de Moraes GJ, Flechtmann CHW (2008) Manual de acarologia. Acarologia básica e ácaros de plantas cultivadas no Brasil. Holos Editora, Ribeirão Preto

    Google Scholar 

  • Dekeyser MA (2005) Review acaricide mode of action. Pest Manag Sci 61:103–110

    Article  CAS  PubMed  Google Scholar 

  • Dennehy TJ, Nyrop JP, Martinson TE (1990) Characterization and exploitation of instability of spider mite. In: Green MB, Lebaron H, Moberg WK (eds) Managing resistance to agrochemicals: from fundamental research to practical strategies. American Chemical Society, Washington, pp 77–91

    Chapter  Google Scholar 

  • Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manag Sci 57:443–448

    Article  CAS  PubMed  Google Scholar 

  • Dunley JE, Croft BA (1992) Dispersal and gene flow of pesticide resistance traits in phytoseiid and tetranychid mites. Exp Appl Acarol 14:313–325

    Article  Google Scholar 

  • Edge VE, James DG (1986) Organo-tin resistance in Tetranychus urticae (Acari: Tetranychidae) in Australia. J Econ Entomol 79:1477–1483

    CAS  Google Scholar 

  • Fergusson-Kolmes LA, Scott JG, Dennehy TJ (1991) Dicofol resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and pharmacokinetics. J Econ Entomol 84:41–48

    CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Flexner JL, Westigard PH, Croft BA (1988) Field reversion of organotin resistance in the twospotted spidermite (Acari: Tetranychidae) following relaxation of selection pressure. J Econ Entomol 81:1516–1520

    CAS  Google Scholar 

  • Gorman K, Hewitt F, Denholm I, Devine GJ (2001) New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urticae) in the UK. Pest Manag Sci 58:123–130

    Article  CAS  Google Scholar 

  • Herron GA, Rophail J (1993) Genetics of hexythiazox resistance in two spotted spider mite, Tetranychus urticae Koch. Exp Appl Acarol 17:423–431

    Article  Google Scholar 

  • Herron GA, Edge V, Rophail J (1993) Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia. Exp Appl Acarol 17:433–440

    Article  CAS  Google Scholar 

  • Humeres EC, Morse JG (2005) Baseline susceptibility of persea mite (Acari: Tetranychidae) to abamectin and milbemectin in avocado in Southern California. Exp Appl Acarol 36:51–59

    Article  CAS  PubMed  Google Scholar 

  • Inoue K (1980) Relationship between dicofol resistance and fitness in the citrus red mite, Panonychus citri (McGregor). J Pestic Sci 5:165–175

    CAS  Google Scholar 

  • Keena MA, Granett J (1990) Genetic analysis of propargite resistance in Pacific spider mites and twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 83:655–661

    Google Scholar 

  • Knight AL, Beers EH, Hoyt SC, Riedl H (1990) Acaricide bioassay with spider mites (Acari: Tetranychidae) on pome fruits: evaluation of methods and selection of discrimination concentrations for resistance monitoring. J Econ Entomol 83:1752–1760

    CAS  Google Scholar 

  • Leibee GL, Capinera JL (1985) Pesticide resistance in Florida insects limits management options. Fla Entomol 78:386–399

    Google Scholar 

  • LeOra Software (1987) POLO-PC: a user’s guide to probit or logit analysis. LeOra Software, Berkeley

  • Miller RW, Croft BA, Nelson RD (1985) Effects of early season immigration on cyhexatin and formetanate resistance of Tetranychus urticae (Acari: Tetranychidae) on strawberries in Central California. J Econ Entomol 78:1379–1388

    Google Scholar 

  • Rauch N, Nauen R (2003) Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pestic Biochem Physiol 74:91–101

    Article  Google Scholar 

  • Saito Y (1979) Comparative studies on life histories of three species of spider mites (Acari: Tetranychidae). Appl Entomol Zool 14:83–94

    Google Scholar 

  • Sato ME, Miyata T, da Silva M, Raga A, de Souza Filho MF (2004) Selections for fenpyroximate resistance and susceptibility, and inheritance, cross resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl Entomol Zool 39:293–302

    Article  CAS  Google Scholar 

  • Sato ME, da Silva MZ, Raga A, de Souza Filho MF (2005) Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotrop Entomol 34:991–998

    Article  CAS  Google Scholar 

  • Shoop WL, Mrozik H, Fisher M (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59:139–156

    Article  CAS  PubMed  Google Scholar 

  • Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari-Tetranychidae). Pestic Biochem Physiol 72:111–121

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Stillatus V, Tirry L (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 32:249–261

    Article  PubMed  Google Scholar 

  • Van Leeuwen T, Van Pottelberge S, Tirry L (2005) Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag Sci 61:499–507

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen T, Tirry L, Nauen R (2006) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem Mol Biol 36:839–877

    Google Scholar 

  • Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980–5985

    Article  PubMed  CAS  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L (2009a) Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag Sci 65:358–366

    Article  PubMed  CAS  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2009b) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23–31

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Yoneda H, Hatano R, Asada M (1995) Laboratory selections of populations in the citrus red mite, Panonychus citri (McGregor), with hexythiazox and their cross resistance spectrum. J Pestic Sci 20:493–501

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to The State of São Paulo Research Foundation (FAPESP) for the financial support to this research (Processes # 2007/08612-4 and 2005/04454-0) and for the scholarship to the first author (Process # 2007/02748-1). We are also grateful to CNPq-Brazil (National Counsel of Technological and Scientific Development—Brazil) for providing the research fellowship to Mario E. Sato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Eidi Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicastro, R.L., Sato, M.E. & Da Silva, M.Z. Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Exp Appl Acarol 50, 231–241 (2010). https://doi.org/10.1007/s10493-009-9304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-009-9304-9

Keywords

Navigation