Skip to main content
Log in

Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy

  • Review Paper
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Divergence times inferred for major lineages of Chelicerata (scorpions, spiders, mites, pycnogonids and xiphosurans) in a recent paper on mitochondrial phylogeny by Jeyaprakash and Hoy are compared to the known stratigraphical occurrences of these groups. Erroneous statements concerning fossil date estimates in the original study are corrected. We emphasize that the fossil record of chelicerates is more complete than is sometimes assumed, and that paleontology plays a key role in dating cladogenesis by setting minimum divergence times, which can and do falsify molecular clock estimates where the inferred divergence is substantially younger than the known fossil record. The oldest representatives of each chelicerate order are documented here, together with similar data for the major mite lineages down to family level. Through these, we hope to provide a robust framework and reference points for future molecular systematic studies of this nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson LI, Selden PA (1997) Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura. Lethaia 30:19–31

    Google Scholar 

  • Aoki J (1974) Mizunami amber and fossil insects. 3. Arachnida: Acarina. Bull Mizunami Fossil Mus 1:397–400. In Japanese; English summary in Vol 2, Addenda: 114

  • Arillo A, Subías LS (2002) Second fossil oribatid mite from the Spanish Lower Cretaceous amber. Eupterotegaeus bitranslamellatus n. sp. (Acariformes, Oribatida, Cepheidae). Acarologia 42:403–406

    Google Scholar 

  • Bernini F (1986) Current ideas on the phylogeny and adaptive radiations of Acarida. Boll Zool 53:279–313

    Google Scholar 

  • Bernini F, Carnevale G, Bagnoli G, Stouge S (2002) An early Ordovician oribatid mite (Acari: Oribatida) from the island of Öland, Sweden. In: Bernini F, Nannelli R, Nuzzaci G, de Lillo E (eds) Acarid phylogeny and evolution. Adaptations in mites and ticks. Kluwer, Dordrecht, pp 45–47

    Google Scholar 

  • Bertkau P (1878) Einige Spinnen und ein Myriapode aus der Braunkohle von Rott. Verhandl d naturh Vereins d preuss 35:346–360

    Google Scholar 

  • Błaszak J, Cokendolpher JC, Polyak VJ (1995) Paleozercon cavernicolous, a new genus and new species of fossil mite from a cave in the southwestern U.S.A. (Acari, Gamasida: Zerconidae). Int J Acarol 21:253–259

    Article  Google Scholar 

  • Bolland HR, Magowski WŁ (1990) Neophyllobius succineus n. sp. from Baltic amber (Acari: Raphignathoidea: Camerobiidae). Entomol Ber 50:17–21

    Google Scholar 

  • Brauckmann C (1987) Neue Arachniden (Ricinuleida, Trigonotarbida) aus dem Namurium B von Hagen-Vorhalle (Ober-Karbon; West-Deutschland). Dortmunder Beit Lndknde, naturwiss Mitt 21:97–109

    Google Scholar 

  • Brauckmann C, Koch L (1983) Prothelyphonus naufragus n. sp., ein neuer Geisselskorpion [Arachnida: Thelyphonida: Thelyphonidae] aus dem Namurium (unteres Oberkarbon) von West-Deutschland. Entomol Germ 9:63–74

    Google Scholar 

  • Bulanova-Zachvatkina EM (1974) New genera of oribatid mites from the Upper Cretaceous of Tajmyr (in Russian) Paleont J 2:141–144

    Google Scholar 

  • Caster KE, Brooks HK (1956) New fossils from the Canadian–Chazyan (Ordovician) hiatus in Tennessee. Bull Am Palaeont 36:157–199

    Google Scholar 

  • Cockerell TDA (1917) Arthropods in Burmese amber. Am J Sci 44(4):360–368

    Google Scholar 

  • Coineau Y, Magowski WŁ (1994) Caeculidae in amber. Acarologia 35:243–246

    Google Scholar 

  • de la Fuente J (2003) The fossil record and origin of ticks (Acari: Parasitiformes: Ixodida). Exp Appl Acarol 29:331–344. doi:10.1023/A:1025824702816

    Article  PubMed  Google Scholar 

  • Domes K, Maraun M, Scheu S, Cameron SL (2008) The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics 9:532. doi:10.1186/1471-2164-9-532

    Article  PubMed  CAS  Google Scholar 

  • Donoghue PCV, Benton MJ (2007) Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends Ecol Evol 22:424–431. doi:10.1016/j.tree.2007.05.005

    Article  PubMed  Google Scholar 

  • Dubinin VB (1962) Class Acaromorpha: mites or gnathosomic chelicerate arthropods. In: Rodendorf BB (ed) Fundamentals of palaeontology. Academy of Sciences of the USSR, Moscow, pp 447–473 (In Russian)

    Google Scholar 

  • Dunlop JA (2007) A large parasitengonid mite (Acari, Erythraeoidea) from the early Cretaceous Crato Formation of Brazil. Foss Rec 10:91–98. doi:10.1002/mmng.200700001

    Article  Google Scholar 

  • Dunlop JA, Alberti G (2008) The affinities of mites and ticks: a review. J Zool Syst Evol Res 46:1–18. doi:10.1111/j.1439-0469.2007.00429.x

    Google Scholar 

  • Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21. doi:10.1111/j.1439-0469.2004.00284.x

    Article  Google Scholar 

  • Dunlop JA, Anderson LI, Kerp H, Hass H (2003) Preserved organs of Devonian harvestmen. Nature 425:916. doi:10.1038/425916a

    Article  PubMed  CAS  Google Scholar 

  • Dunlop JA, Wunderlich J, Poinar GO Jr (2004) The first fossil opilioacariform mite (Acari: Opilioacariformes) and the first Baltic amber camel spider (Solifugae). Trans R Soc Edinb Earth Sci 94:273–281

    Google Scholar 

  • Dunlop JA, Penney D, Jekel D (2008a) A summary list of fossil spiders. In: Platnick NI (ed) The world spider catalog, version 9.0. American Museum of Natural History, pp 1–75, online at http://research.amnh.org/entomology/spiders/catalog/index.html

  • Dunlop JA, Tetlie OE, Prendini L (2008b) Reinterpretation of the Silurian scorpion Proscorpius osborni (Whitfield): integrating data from Palaeozoic and Recent scorpions. Palaeontology 51:303–320. doi:10.1111/j.1475-4983.2007.00749.x

    Article  Google Scholar 

  • Dunlop JA, Penney D, Tetlie OE, Anderson LI (2008c) How many species of fossil arachnid are there? J Arachnol 36:267–272. doi:10.1636/CH07-89.1

    Article  Google Scholar 

  • Ewing HE (1937) Acarina from Canadian amber. Uni Tor Stud Geol Ser 40:56–62

    Google Scholar 

  • Fet V, Sissom WD, Lowe G, Braunwalder ME (2000) Catalog of the scorpions of the world (1758–1998). The New York Entomological Society, New York

    Google Scholar 

  • Gillespie JM, Bain BA (2006) Postembryonic development of Tanystylum bealensis (Pycnogonida, Ammotheidae) from Barkley Sound, British Columbia, Canada. J Morphol 267:308–317. doi:10.1002/jmor.10402

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70. doi:10.1111/j.1096-0031.2002.tb00140.x

    PubMed  Google Scholar 

  • Gradstein FM et al (2004) A geological time scale 2004. Cambridge University Press, Cambridge, p 384

    Google Scholar 

  • Harger O (1874) Notice of a new spider from the Coal Measures of Illinois. Am J Sci 7:219–223

    Google Scholar 

  • Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38:100–116. doi:10.1016/j.ympev.2005.09.012

    Article  PubMed  CAS  Google Scholar 

  • Hirschmann W (1971) A fossil mite of the genus Dendrolaelaps (Acarina, Mesostigmata, Digamasellidae) found in amber from Chiapas, Mexico. Uni Calif Pub Entomol 63:69–70

    Google Scholar 

  • Hirst S (1923) On some arachnid remains from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire). Ann Mag Nat Hist 12(9):455–474

    Google Scholar 

  • Jeram AJ, Selden PA, Edwards D (1990) Land animals in the Silurian: arachnids and myriapods from Shropshire, England. Science 250:658–661. doi:10.1126/science.250.4981.658

    Article  PubMed  Google Scholar 

  • Jeyaprakash A, Hoy MA (2009) First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 47:1–18. doi:10.1007/s10493-008-9203-5

    Article  PubMed  CAS  Google Scholar 

  • Judson M, Wunderlich J (2003) Rhagidiidae (Acari, Eupodoidea) from Baltic amber. Acta zool cracov 46(suppl.–Fossil Insects):147–152

    Google Scholar 

  • Karppinen E, Krivolutsky DA, Koponen M, Kozlovskaja LS, Laskova LM, Viitasaari M (1979) List of subfossil oribatid mites (Acarina, Oribatei) of northern Europe and Greenland. Ann entomol Fenn 45:103–108

    Google Scholar 

  • Karsch F (1884) Neue Milben in Bernstein. Berl Entomol Zeit 28:175–176

    Google Scholar 

  • Kjellesvig-Waering EN (1986) A restudy of the fossil Scorpionida of the World. Palaeont Am 55:1–287

    Google Scholar 

  • Klompen H, Grimaldi D (2001) First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Ann Entomol Soc Am 94:10–15. doi:10.1603/0013-8746(2001)094[0010:FMROAP]2.0.CO;2

    Article  Google Scholar 

  • Koch CL, Berendt GC (1854) Die im Bernstein befindlichen Myriapoden, Arachniden und Apteren der Vorwelt. In: Berendt GC (ed) Die in Bernstein Befindlichen Organischen Reste der Vorwelt Gesammelt in Verbindung mit Mehreren Bearbeitetet und Herausgegeben 1. Nicolai, Berlin

    Google Scholar 

  • Krivolutsky DA, Krasilov BA (1977) Oribatid mites from Upper Jura deposits of USSR. In: Skarlato OA, Balashov YS (eds) Morphology and diagnostics of mites. Zoological Institute, Leningrad, pp 16–24 (In Russian)

    Google Scholar 

  • Krivolutsky DA, Ryabinin NA (1976) Oribatid mites in Siberian and Far East amber. Rep Acad Sci USSR 230:945–948

    Google Scholar 

  • Kulicka R (1990) The list of animal inclusions in Baltic amber from collection of the museum of earth in Warsaw. Prace Muzeum Ziemi 41:144–146

    Google Scholar 

  • Laurie M (1899) On a Silurian scorpion and some additional eurypterid remain from the Pentland Hills. Trans R Soc Edinb 39:575–590

    Google Scholar 

  • Lin Q-b, Yao Y-m, Xiang W-d, Xia Y-r (1988) An Oligocene micropalaeoentomofauna from Gubei district of Shandong and its ecological environment. Acta Micropalaeont Sin 5:331–345 (in Chinese and English)

    Google Scholar 

  • Lourenço WR, Gall JC (2004) Fossil scorpion from the Buntsandstein (Early Triassic) of France. C R Palevol 3:369–378. doi:10.1016/j.crpv.2004.06.006

    Article  Google Scholar 

  • Magowski WŁ (1994) Discovery of the first representative of the mite subcohort Heterostigmata (Arachinida: Acari) in the Mesozoic Siberian amber. Acarologia 35:229–241

    Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191. doi:10.1016/j.ympev.2003.07.013

    Article  PubMed  CAS  Google Scholar 

  • Norton RA (2006) First record of Collohmannia (C. schusteri n. sp.) and Hermannia (H. sellnicki n. sp.) from Baltic amber, with notes on Sellnick’s genera of fossil oribatid mites (Acari: Oribatida). Acarologia 46:111–125

    Google Scholar 

  • Norton RA, Poinar GO Jr (1993) Reassessment and new records of oribatid mite fossils from Tertiary Neotropical amber. Acarologia 34:57–68

    Google Scholar 

  • Norton RA, Bonamo PN, Grierson JD, Shear WA (1988) Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol 62:259–269

    Google Scholar 

  • Palmer AR (1957) Miocene arthropods from the Mojave Desert California. Geol Surv Prof Pap 294-G:237–280

    Google Scholar 

  • Pampaloni L (1902) I resti organici nel disodile di Melilli in Sicilia. Palaeontogr Ital 8:121–130

    Google Scholar 

  • Penney D, Selden PA (2006) Assembling the Tree of Life — Phylogeny of Spiders: a review of the strictly fossil spider families. In: Deltshev C, Stoev P (eds) European Arachnology 2005. Acta Zool Bulgarica Suppl 1:25–39

  • Petrunkevitch AI (1913) A monograph of the terrestrial Palaeozoic Arachnida of North America. Trans Conn Acad Arts Sci 18:1–137

    Google Scholar 

  • Pocock RI (1911) A monograph of the terrestrial Carboniferous Arachnida of Great Britain. Monogr Palaeontogr Soc 315:1–84

    Google Scholar 

  • Podsiadlowski L, Braband A (2006) The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida). BMC Genomics 7:1–13. doi:10.1186/1471-2164-7-284

    Article  CAS  Google Scholar 

  • Poinar GO Jr, Brown AE (2003) A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae). Syst Parasitol 54:199–205. doi:10.1023/A:1022689325158

    Article  PubMed  Google Scholar 

  • Poinar GO Jr, Buckley R (2008) Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from Lower Cretaceous Burmese amber. Proc Entomol Soc Wash 110:445–450

    Google Scholar 

  • Poschmann M, Anderson LI, Dunlop JA (2005) Chelicerate arthropods, including the oldest phalangiotarbid arachnid, from the early Devonian (Siegenian) of the Rhenish Massif, Germany. J Paleontol 79:110–124. doi:10.1666/0022-3360(2005)

    Article  Google Scholar 

  • Ramsay GW (1960) Sub-fossil mites from the Hutt Valley. Trans R Soc NZ 88:575–576

    Google Scholar 

  • Regier JC, Shultz JW (2001) Elongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20:136–148. doi:10.1006/mpev.2001.0956

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc Lond B Biol Sci 272:395–401. doi:10.1098/rspb.2004.2917

    Article  Google Scholar 

  • Roemer F (1866) Protolycosa anthracophila, eine fossile Spinne aus dem Steinkohlengebirge Oberschlesiens. N Jb Min Geol Paläont 1866:136–143

    Google Scholar 

  • Rowland JM, Sissom WD (1980) Report on a fossil palpigrade from the Tertiary of Arizona, and a review of the morphology and systematics of the order (Arachnida: Palpigradida). J Arachnol 8:69–86

    Google Scholar 

  • Rudkin DM, Young GA, Nowlan GS (2008) The oldest horseshoe crab: a new xiphosurid from late Ordovician Konservatt-Lagerstätten deposits, Manitobia, Canada. Palaeont 51:1–9. doi:10.1111/j.1475-4983.2007.00746.x

    Google Scholar 

  • Selden PA (1993a) Fossil arachnids—recent advances and future prospects. Mem Qnld Mus 33:389–400

    Google Scholar 

  • Selden PA (1993b) Arthropoda (Aglaspidida, Pycnogonida and Chelicerata). In: Benton MJ (ed) The fossil record 2. Chapman and Hall, London, pp 297–320

    Google Scholar 

  • Selden PA (1996) Fossil mesothele spiders. Nature 379:498–499. doi:10.1038/379498b0

    Article  CAS  Google Scholar 

  • Selden PA, Gall J-C (1992) A Triassic mygalomorph spider from the northern Vosges, France. Palaeont 35:211–235

    Google Scholar 

  • Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeont 34:241–281

    Google Scholar 

  • Selden PA, Anderson HM, Anderson JM, Fraser NC (1999) The oldest araneomorph spiders, from the Triassic of South Africa and Virginia. J Arachnol 27:401–414

    Google Scholar 

  • Selden PA, Shear WA, Sutton M (2008) Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc Natl Acad Sci USA 105:20781–20785. doi:10.1073/pnas.0809174106

    Article  PubMed  CAS  Google Scholar 

  • Sellnick M (1919) Die Oribatiden der Bernsteinsammlung der Universität Königsberg i. Pr. Schrift Physikal-Okon Gesell Konigsberg 59:21–42

    Google Scholar 

  • Sellnick M (1931) Milben in Bernstein. Bernsteinforsch 2:148–180

    Google Scholar 

  • Shear WA, Schawaller W, Bonamo PM (1989) Record of Palaeozoic pseudoscorpions. Nature 341:527–529. doi:10.1038/341527a0

    Article  Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265. doi:10.1111/j.1096-3642.2007.00284.x

    Article  Google Scholar 

  • Sivhed U, Wallwork JA (1978) An early Jurassic oribatid mite from southern Sweden. Geol Foren Stockh Forh 100:65–70

    Google Scholar 

  • Solhøy IW, Solhøy T (2000) The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J Paleolimnol 23:35–47. doi:10.1023/A:1008068915118

    Article  Google Scholar 

  • Southcott RV, Lange RT (1971) Acarine and other microfossils from the Maslin Eocene, South Australia. Rec S Aust Mus 16(7):1–21

    Google Scholar 

  • Størmer L (1951) A new eurypterid from the Ordovician of Montgomeryshire, Wales. Geol Mag 88:409–422

    Article  Google Scholar 

  • Subías LS, Arillo A (2002) Oribatid mite fossils from the Upper Devonian of South Mountain, New York and the Lower Carboniferous of County Antrim Northern Ireland (Acariformes, Oribatida). Est Mus Cienc Nat Alava 17:93–106

    Google Scholar 

  • Türk E (1963) A new tyroglyphid deutonymph in amber from Chiapas, Mexico. Uni Calif Pub Entomol 31:49–51

    Google Scholar 

  • Vercammen-Grandjean PH (1973) Study of the “Erythraeidae, R.O.M. No. 8” of Ewing, 1937. In: Daniel M and Rosický B (eds) Proceedings of the 3rd International Congress of Acarology. Academia, Prague, p 329–335

  • Vollrath F, Selden PA (2007) The role of behavior in the evolution of spiders, silks, and webs. Annu Rev Ecol Evol Syst 38:819–846. doi:10.1146/annurev.ecolsys.37.091305.110221

    Article  Google Scholar 

  • von Heyden CHG (1860) Fossile Gallen auf Blättern aus den Braunkohlengrube von Salzhausen. Ber. Oberh Ges Nat Heik Gieszen 8:63

    Google Scholar 

  • von Heyden CHG (1862) Gliederthiere aus der Braunkohle des Niederrhein’s, der Wetterau und der Röhn. Palaeontographica 10:62–82

    Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden and the phylogenetic position of pycnogonids. Palaentology 45:421–436. doi:10.1111/1475-4983.00244

    Article  Google Scholar 

  • Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192. doi:10.1111/j.1096-0031.1998.tb00331.x

    Article  Google Scholar 

  • Witlański W (2000) Aclerogamasus stenocornis sp. n., a fossil mite from the Baltic amber (Acari: Gamasida: Parasitidae). Genus 11:619–626

    Google Scholar 

  • Womersley H (1957) A fossil mite (Acronothrus ramus n.sp.) from Cainozoic resin at Allendale, Victoria. Proc R Soc Vic 69:21–23

    Google Scholar 

  • Woolley TA (1971) Fossil oribatid mites in amber from Chiapas, Mexico (Acarina: Oribatei = Cryptostigmata). Uni Calif Pub Entomol 63:91–99

    Google Scholar 

  • Wunderlich J (2008) (ed) Fossil and extant spiders. Beitr Araneol 5:1–870

  • Zacharda M, Krivoluckij DA (1985) Prostigmatic mites (Acarina: Prostigmata) from the Upper Cretaceous and Paleogene amber of the USSR. Vest cesk ven spol Zool 49:147–152

    Google Scholar 

Download references

Acknowledgments

We thank Victor Fet, Bill Shear and the reviewers for helpful comments. JAD acknowledges a DFG grant SCHO 442/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Dunlop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunlop, J.A., Selden, P.A. Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy. Exp Appl Acarol 48, 183–197 (2009). https://doi.org/10.1007/s10493-009-9247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-009-9247-1

Keywords

Navigation