Skip to main content
Log in

CDEPSO: a bi-population hybrid approach for dynamic optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Many real-world optimization problems are dynamic, in which the environment, i.e. the objective function and restrictions, can change over time. In this case, the optimal solution(s) to the problem may change as well. These problems require optimization algorithms to continuously and accurately track the trajectory of the optima (optimum) through the search space. In this paper, we propose a bi-population hybrid collaborative model of Crowding-based Differential Evolution (CDE) and Particle Swarm Optimization (PSO) for Dynamic Optimization Problems (DOPs). In our approach, called CDEPSO, a population of genomes is responsible for locating several promising areas of the search space and keeping diversity throughout the run using CDE. Another population is used to exploit the area around the best found position using the PSO. Several mechanisms are used to increase the efficiency of CDEPSO when finding and tracking peaks in the solution space. A set of experiments was carried out to evaluate the performance of the proposed algorithm on dynamic test instances generated using the Moving Peaks Benchmark (MPB). Experimental results show that the proposed approach is effective in dealing with DOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36:735–748. doi:10.1007/s10489-011-0292-1

    Article  Google Scholar 

  2. Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2013) Adaptive cooperative particle swarm optimizer. Appl Intell 39:397–420. doi:10.1007/s10489-012-0420-6

    Article  Google Scholar 

  3. Blackwell TM (2005) Particle swarms and population diversity. Soft Comput 9:793–802. doi:10.1007/s00500-004-0420-5

    Article  MATH  Google Scholar 

  4. Norouzzadeh MS, Ahmadzadeh MR, Palhang M (2012) LADPSO: using fuzzy logic to conduct PSO algorithm. Appl Intell 37:290–304. doi:10.1007/s10489-011-0328-6

    Article  Google Scholar 

  5. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments—a survey. IEEE Trans Evol Comput 9:303–317. doi: 10.1109/TEVC.2005.846356

    Article  Google Scholar 

  6. Hu X, Eberhart RC (2002) Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of the 2002 congress on evolutionary computation, pp 1666–1670

    Google Scholar 

  7. Yang S (2008) Genetic algorithms with memory-and elitism-based immigrants in dynamic environments. Evol Comput 16:385–416. doi:10.1162/evco.2008.16.3.385

    Article  Google Scholar 

  8. Yang S, Yao X (2008) Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput 12:542–561. doi:10.1109/TEVC.2007.913070

    Article  Google Scholar 

  9. Branke J (1999) Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the 1999 congress on evolutionary computation, Washington, DC, USA, pp 1875–1882

    Google Scholar 

  10. Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments. In: Raidl GR (ed) Applications of evolutionary computing, pp 489–500

    Chapter  Google Scholar 

  11. Kamosi M, Hashemi AB, Meybodi MR (2010) A hibernating multi-swarm optimization algorithm for dynamic environments. In: 2010 second world congress on nature and biologically inspired computing (NaBIC), pp 363–369

    Chapter  Google Scholar 

  12. Kamosi M, Hashemi AB, Meybodi MR (2010) A new particle swarm optimization algorithm for dynamic environments. In: Panigrahi BK (ed) Swarm, evolutionary, and memetic computing, pp 129–138

    Chapter  Google Scholar 

  13. Blackwell T, Branke J, Li X (2008) Particle swarms for dynamic optimization problems. In: Blum C (ed) Swarm intelligence. Springer, Berlin, pp 193–217

    Chapter  Google Scholar 

  14. Hashemi A, Meybodi MR (2009) Cellular PSO: a PSO for dynamic environments. In: Cai Z (ed) Advances in computation and intelligence. Springer, Berlin, pp 422–433

    Chapter  Google Scholar 

  15. Hashemi AB, Meybodi MR (2009) A multi-role cellular PSO for dynamic environments. In: Proceedings of 14th international CSI computer conference, Tehran, Iran, pp 412–417

    Google Scholar 

  16. Noroozi V, Hashemi A, Meybodi MR (2011) CellularDE: a cellular based differential evolution for dynamic optimization problems. In: Dobnikar A (ed) Adaptive and natural computing algorithms. Springer, Berlin, pp 340–349

    Chapter  Google Scholar 

  17. Kianfar S, Meybodi MR (2012) Cellular ant colony algorithm. In: Proceedings of 17th annual CSI computer conference of Iran, Tehran, Iran, pp 45–50

    Google Scholar 

  18. Nabizadeh S, Rezvanian A, Meybodi MR (2012) Tracking extrema in dynamic environment using multi-swarm cellular PSO with local search. Int J Electron Inform 1:29–37

    Google Scholar 

  19. Nabizadeh S, Rezvanian A, Meybodi MR (2012) A multi-swarm cellular PSO based on clonal selection algorithm in dynamic environments. In: 2012 international conference on informatics, electronics & vision (ICIEV), Dhaka, Bangladesh, pp 482–486

    Chapter  Google Scholar 

  20. Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput 14:959–974. doi:10.1109/TEVC.2010.2046667

    Article  Google Scholar 

  21. Li C, Yang S (2012) A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans Evol Comput 16:556–577. doi:10.1109/TEVC.2011.2169966

    Article  Google Scholar 

  22. Lung RI, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput 9:83–94

    Article  MATH  MathSciNet  Google Scholar 

  23. Lung RI, Dumitrescu D (2007) A collaborative model for tracking optima in dynamic environments. In: IEEE congress on evolutionary computation, pp 564–567

    Google Scholar 

  24. Thangaraj R, Pant M, Abraham A, Bouvry P (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217:5208–5226. doi:10.1016/j.amc.2010.12.053

    Article  MATH  Google Scholar 

  25. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15:4–31. doi:10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  26. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Congress on evolutionary computation, pp 1382–1389

    Google Scholar 

  27. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  28. Nabizadeh S, Faez K, Tavassoli S, Rezvanian A (2010) A novel method for multi-level image thresholding using particle swarm. In: Optimization algorithms. 2010 2nd international conference on computer engineering and technology (ICCET). pp V4-271–V4-275

    Google Scholar 

  29. Zheng Y-J, Chen S-Y (2013) Cooperative particle swarm optimization for multiobjective transportation planning. Appl Intell 39:202–216. doi:10.1007/s10489-012-0405-5

    Article  Google Scholar 

  30. Wang K, Zheng YJ (2012) A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design. Appl Intell 37:520–526. doi:10.1007/s10489-012-0345-0

    Article  Google Scholar 

  31. Khan SA, Engelbrecht AP (2012) A fuzzy particle swarm optimization algorithm for computer communication network topology design. Appl Intell 36:161–177. doi:10.1007/s10489-010-0251-2

    Article  Google Scholar 

  32. Ali YMB (2012) Psychological model of particle swarm optimization based multiple emotions. Appl Intell 36:649–663. doi:10.1007/s10489-011-0282-3

    Article  Google Scholar 

  33. Masoud H, Jalili S, Hasheminejad SMH (2013) Dynamic clustering using combinatorial particle swarm optimization. Appl Intell 38:289–314. doi:10.1007/s10489-012-0373-9

    Article  Google Scholar 

  34. Soleimani-Pouri M, Rezvanian A, Meybodi MR (2012) Finding a maximum clique using ant colony optimization and particle swarm optimization in social networks. In: Proceedings of the 2012 international conference on advances in social networks analysis and mining (ASONAM 2012). IEEE Computer Society, Washington, pp 58–61

    Google Scholar 

  35. Blackwell T, Branke J (2006) Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans Evol Comput 10:459–472. doi:10.1109/TEVC.2005.857074

    Article  Google Scholar 

  36. Mendes R, Mohais AS (2005) DynDE: a differential evolution for dynamic optimization problems. In: The 2005 IEEE congress on evolutionary computation, pp 2808–2815

    Chapter  Google Scholar 

  37. Noroozi V, Hashemi AB, Meybodi MR (2012) Alpinist CellularDE: a cellular based optimization algorithm for dynamic environments. In: Proceedings of the fourteenth international conference on genetic and evolutionary computation conference companion (GECCO 2012). ACM, New York, pp 1519–1520

    Chapter  Google Scholar 

  38. Du Plessis MC, Engelbrecht AP (2013) Differential evolution for dynamic environments with unknown numbers of optima. J Glob Optim 55:73–99. doi:10.1007/s10898-012-9864-9

    Article  MATH  MathSciNet  Google Scholar 

  39. Nickabadi A, Ebadzadeh M, Safabakhsh R (2012) A competitive clustering particle swarm optimizer for dynamic optimization problems. Swarm Intell 6:177–206. doi:10.1007/s11721-012-0069-0

    Article  Google Scholar 

  40. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11:3658–3670. doi:10.1016/j.asoc.2011.01.037

    Article  Google Scholar 

  41. Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12:107–125. doi:10.1109/TEVC.2007.895272

    Article  Google Scholar 

  42. Ayvaz D, Topcuoglu HR, Gurgen F (2012) Performance evaluation of evolutionary heuristics in dynamic environments. Int J Appl Intell 37:130–144. doi:10.1007/s10489-011-0317-9

    Article  Google Scholar 

  43. The Moving Peaks Benchmark (2008). http://www.aifb.unikarlsruhe.de/~jbr/MovPeaks/

  44. Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi MR (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl Soft Comput 13:2144–2158. doi:10.1016/j.asoc.2012.12.020

    Article  Google Scholar 

  45. Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10:440–458. doi:10.1109/TEVC.2005.859468

    Article  Google Scholar 

  46. Del Amo IG, Pelta DA, González JR (2010) Using heuristic rules to enhance a multiswarm PSO for dynamic environments. In: 2010 IEEE congress on evolutionary computation (CEC), pp 1–8

    Google Scholar 

  47. Karimi J, Nobahari H, Pourtakdoust SH (2012) A new hybrid approach for dynamic continuous optimization problems. Appl Soft Comput 12:1158–1167. doi:10.1016/j.asoc.2011.11.005

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to V. Noroozi for providing the results of his algorithm. The authors also like to thank the anonymous associate editor and reviewers for their constructive comments to improve the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Rezvanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordestani, J.K., Rezvanian, A. & Meybodi, M.R. CDEPSO: a bi-population hybrid approach for dynamic optimization problems. Appl Intell 40, 682–694 (2014). https://doi.org/10.1007/s10489-013-0483-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0483-z

Keywords

Navigation