Skip to main content
Log in

A fuzzy particle swarm optimization algorithm for computer communication network topology design

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Particle swarm optimization (PSO) is a powerful optimization technique that has been applied to solve a number of complex optimization problems. One such optimization problem is topology design of distributed local area networks (DLANs). The problem is defined as a multi-objective optimization problem requiring simultaneous optimization of monetary cost, average network delay, hop count between communicating nodes, and reliability under a set of constraints. This paper presents a multi-objective particle swarm optimization algorithm to efficiently solve the DLAN topology design problem. Fuzzy logic is incorporated in the PSO algorithm to handle the multi-objective nature of the problem. Specifically, a recently proposed fuzzy aggregation operator, namely the unified And-Or operator (Khan and Engelbrecht in Inf. Sci. 177: 2692–2711, 2007), is used to aggregate the objectives. The proposed fuzzy PSO (FPSO) algorithm is empirically evaluated through a preliminary sensitivity analysis of the PSO parameters. FPSO is also compared with fuzzy simulated annealing and fuzzy ant colony optimization algorithms. Results suggest that the fuzzy PSO is a suitable algorithm for solving the DLAN topology design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal KK, Rai S (1981) Reliability evaluation in computer communication networks. IEEE Trans Reliab 30(1):32–35

    Article  MATH  Google Scholar 

  2. Al-Jaafreh M, Al-Jumaily M (2006) Particle swarm optimization based stroke volume influence on mean arterial pressure. In: Proceedings of the IEEE international conference on biomedical and pharmaceutical engineering, pp 508–512

  3. Angeline P (1998) Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: Porto VW, Saravanan N, Waagen D, Eiben A (eds) Evolutionary programming VII. Springer, Berlin, pp 601–610

    Chapter  Google Scholar 

  4. Atiqullah MM, Rao SS (1993) Reliability optimization of communication networks using simulated annealing. Microelectron Reliab 33(9):1303–1319

    Article  Google Scholar 

  5. Bartz-Beielstein T, Limbourg P, Parsopoulos K, Vrahatis M, Mehnen J, Schmitt K (2003) Particle swarm optimizers for Pareto optimization with enhanced archiving techniques. In: IEEE congress on evolutionary computation, pp 1780–1787

  6. Baumgartner U, Magele C, Renhart W (2004) Pareto optimality and particle swarm optimization. IEEE Trans Magn 40(2):1172–1175

    Article  Google Scholar 

  7. Chow C, Tsui H (2004) Autonomous agent response learning by a multi-species particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 778–785

  8. Cho H, Wang B, Roychowdhury S (1998) Automatic rule generation for fuzzy controllers using genetic algorithms: A study on representation scheme and mutation rate. In: Proceedings of IEEE world congress on computational intelligence, pp 1290–1295

  9. Coello-Coello CA, Lechuga M (2002) MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1051–1056

  10. Dengiz B, Altiparmak F, Smith A (1997) Local search genetic algorithm for optimal design of reliable network. IEEE Trans Evol Comput 1:179–188

    Article  Google Scholar 

  11. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, pp 39–43

  12. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international joint conference on neural networks, pp 1942–1948

  13. Eberhart R, Kennedy J (1999) The particle swarm: Social adaptation in information processing systems. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York, pp 379–387

    Google Scholar 

  14. Eberhart R, Simpson P, Dobbins R (1996) Computational intelligence PC tools. Academic Press, New York

    Google Scholar 

  15. Elbaum R, Sidi M (1996) Topological design of local-area networks using genetic algorithm. IEEE/ACM Trans Netw 4:766–778

    Article  Google Scholar 

  16. El-Garhy AM, El-Shimy ME (2007) Development of decoupling scheme for high order MIMO process based on PSO technique. Appl Intell 26(3):217–229

    Article  MATH  Google Scholar 

  17. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, New York

    Google Scholar 

  18. Ersoy C, Panwar S (1993) Topological design of interconnected LAN/MAN networks. IEEE J Sel Area Commun 11:1172–1182

    Article  Google Scholar 

  19. Esau LR, Williams KC (1966) On teleprocessing system design. A method for approximating the optimal network. IBM Syst J 5:142–147

    Article  Google Scholar 

  20. Fieldsend F, Singh S (2002) A multiobjective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In: Proceedings of UK workshop on computational intelligence, pp 37–44

  21. Gen M, Ida K, Kim J (1998) A spanning tree-based genetic algorithm for bicriteria topological network design. In: Proceedings of IEEE international conference on evolutionary computation, pp 164–173

  22. Habib S (2005) Redesigning network topology with technology considerations. In: Proceedings of the 9th IFIP/IEEE international symposium on integrated network management, pp 207–219

  23. Hamacher H (1978) Ueber logische Verknupfungen Unschalfer Aussagen und deren Zugehoerige Bewertungs-funktione. Prog Cybern Syst Res 3:276–288

    Google Scholar 

  24. Haupt R (2000) Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. In: Proceedings of IEEE antennas and propagation society international symposium, pp 1034–1037

  25. Ho SL, Shiyou Y, Guangzheng N, Lo E, Wong H (2005) A particle swarm optimization based method for multiobjective design optimizations. IEEE Trans Magn 41(5):1756–1759

    Article  Google Scholar 

  26. Hu X, Eberhart R (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1677–1681

  27. Hu X, Eberhart R, Shi Y (2003) Particle swarm with extended memory for multiobjective optimization. In: Proceedings of IEEE swarm intelligence symposium, pp 193–197

  28. Ince T, Kiranyaz S, Gabbouj M (2009) A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56(5):1415–1426

    Article  Google Scholar 

  29. Keiser GE (1989) Local area networks. McGraw-Hill, New York

    Google Scholar 

  30. Kershenbaum A (1993) Telecommunications network design algorithms. McGraw-Hill, New York

    Google Scholar 

  31. Khan SA, Engelbrecht AP (2007) A new fuzzy operator and its application to topology design of distributed local area networks. Inf Sci 177:2692–2711

    Article  MATH  Google Scholar 

  32. Khan SA, Engelbrecht AP (2008) A fuzzy ant colony optimization algorithm for topology design of distributed local area networks. In: Proceedings of IEEE swarm intelligence symposium, pp 1–7

  33. Khan SA, Engelbrecht AP (2009) Fuzzy hybrid simulated annealing algorithms for topology design of switched local area networks. Soft Comput 3(1):45–61

    Article  Google Scholar 

  34. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 498–516

  35. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Am Math Soc 7(1):48–50

    Article  MATH  MathSciNet  Google Scholar 

  36. Kumar A, Pathak M, Gupta Y (1995) Genetic algorithm-based reliability optimization for computer network expansion. IEEE Trans Reliab 24:63–72

    Article  Google Scholar 

  37. Lee S, Wu C (1994) A knowledge-based approach to the local area network design problem. Appl Intell 4(1):89–97

    Article  MATH  MathSciNet  Google Scholar 

  38. Li H, Yen V (1997) Fuzzy sets and fuzzy decision-making. Kluwer, Dordrecht

    Google Scholar 

  39. Lim A, Lin J, Xiao F (2007) Particle swarm optimization and hill climbing for the bandwidth minimization problem. Appl Intell 26(2):175–182

    Article  MATH  Google Scholar 

  40. Lim M, Rahardja S, Gwee B (1996) A GA paradigm for learning fuzzy rules. Fuzzy Sets Syst 82:177–186

    Article  MathSciNet  Google Scholar 

  41. Liska J, Melsheimer S (1994) Complete design of fuzzy login system using genetic algorithms. In: Proceedings of 3rd IEEE international conference on fuzzy systems, pp 1377–1382

  42. Miettinen K (2001) Some methods for nonlinear multi-objective optimization. In: Proceedings of the first international conference on evolutionary multi-criterion optimization. LNCS, pp 1–20

  43. Moore J, Chapman R (1999) Application of particle swarm to multiobjective optimization. Technical Report, Department of Computer Science and Software Engineering, Auburn University

  44. Mostaghim S, Teich J (2003) Strategies for finding good local guides in multi-objective particle swarm optimization. In: Proceedings of IEEE swarm intelligence symposium, pp 26–33

  45. Ochoa A, Hernandez A, Gonzalez S, Jons S, Padilla A (2008) Hybrid system to determine the ranking of a returning participant in Eurovision. In: Proceedings of the IEEE 8th international conference on hybrid intelligent systems, pp 489–494

  46. Parsopoulos K, Vrahatis M (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1:235–306

    Article  MATH  MathSciNet  Google Scholar 

  47. Parsopoulos K, Vrahatis M (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of ACM symposium on applied computing, pp 603–607

  48. Parsopoulos K, Tasoulis D, Vrahatis M (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of IASTED international conference on artificial intelligence and applications, pp 823–828

  49. Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401

    Google Scholar 

  50. Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153

    Article  Google Scholar 

  51. Reyes-Sierra M, Coello-Coello CA (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  52. Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. In: Porto VW, Saravanan N, Waagen D, Eiben A (eds) Evolutionary programming VII. Springer, Berlin, pp 611–616

    Google Scholar 

  53. Sportack MA (1999) IP routing fundamentals. Cisco Press, Indianapolis

    Google Scholar 

  54. Tušar T, Korošec P, Papa G, Filipič B, Šilc J (2007) A comparative study of stochastic optimization methods in electric motor design. Appl Intell 27(2):101–111

    Article  MATH  Google Scholar 

  55. Van den Bergh F (2001) An analysis of particle swarm optimizers. PhD Thesis, University of Pretoria

  56. Van den Bergh F, Engelbrecht AP (2001) Training product unit networks using cooperative particle swarm optimizers. In: Proceedings of IEEE international joint conference on neural networks, pp 126–132

  57. Van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer. In: Proceedings of IEEE conference on systems, man, and cybernetics, pp 96–101

  58. Wang L, Singh C (2006) Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization. In: Proceedings of the IEEE power engineering society general meeting, pp 1–8

  59. Xu C, Zhang Q, Wang B, Zhang R (2008) Improved particle swarm optimization algorithm for 2D protein folding prediction. In: Proceedings of the IEEE 2nd international conference on bioinformatics and biomedical engineering, pp 816–819

  60. Yager R (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern 18(1):183–190

    Article  MATH  MathSciNet  Google Scholar 

  61. Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4):1232–1239

    Article  Google Scholar 

  62. Youssef H, Sait S, Issa O (1997) Computer-aided design of structured backbones. In: Proceedings of 15th national computer conference and exhibition, pp 1–18

  63. Youssef H, Sait S, Khan SA (2000) Fuzzy simulated evolution algorithm for topology design of campus networks. In: Proceedings of IEEE congress on evolutionary computation, pp 180–187

  64. Youssef H, Sait S, Khan SA (2002) Topology design of switched enterprise networks using a fuzzy simulated evolution algorithm. Eng Appl Artif Intell 15:327–340

    Article  Google Scholar 

  65. Youssef H, Sait S, Khan SA (2004) A fuzzy evolutionary algorithm for topology design of campus networks. Arab J Sci Eng 29(2b):195–212

    Google Scholar 

  66. Zadeh LA (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8:59–60

    Article  Google Scholar 

  67. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  68. Zhang X, Li T (2007) Improved particle swarm optimization algorithm for 2D protein folding prediction. In: Proceedings of the IEEE 1st international conference on bioinformatics and biomedical engineering, pp 53–56

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.A., Engelbrecht, A.P. A fuzzy particle swarm optimization algorithm for computer communication network topology design. Appl Intell 36, 161–177 (2012). https://doi.org/10.1007/s10489-010-0251-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-010-0251-2

Keywords

Navigation