Skip to main content
Log in

Distinguishing Voluntarily Upregulation of Localized Central Alpha from Widespread Posterior Alpha

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Neurofeedback (NF) training based on alpha upregulation has been widely used on patient and healthy populations. However, active voluntary modulation of central or widespread posterior alpha in response to central alpha feedback is still ambiguous. The objective of this study is to confirm whether patients learn to truly increase alpha power and to determine if patients modulate central or widespread alpha power when alpha feedback is provided from central brain region. This EEG-based NF study was conducted on seven paraplegic patients with same injury type, pain location, and sensitization to ensure homogeneity. In addition to routine NF training sessions, various experiments were performed to compare alpha NF modulation received from C4 with alpha shift during cognitive tasks, occipital or parieto-occipital cortex, and Laplacian montage which is expected to separate localized alpha from widespread alpha, to attain objectives. Moreover, imaginary coherence analysis in alpha band was also performed to check whether C4 training site is coupled with other brain regions and to confirm whether activity at training site leads/lags the activity of other brain regions. The results indicate widespread alpha modulation in patients during regular NF sessions (p < 0.05) with large effect size (> 0.8), sufficiently high statistical power (> 80%), and a narrower confidence interval (CI) in response to NF provided from the central brain region reflecting less uncertainty and higher precision. However, small effect size obtained with Laplacian montage require patients to be trained with Laplacian feedback to achieve a reliable conclusion regarding localized alpha modulation. The outcomes of this study are not only limited to validate true alpha modulation in response to central alpha feedback but also to explore the mechanism of central alpha NF training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al-Taleb, H., Purcell, M. K., Fraser, M., Petric-Gray, N., & Vuckovic, A. (2019). Home used, patient self-managed, brain- computer interface for the management of central neuropathic pain post spinal cord injury: Usability study. Journal of NeuroEngineering and Rehabilitation, 16(1), 1–24

    Article  Google Scholar 

  • Allen, J. J. B., Harmon-Jones, E., & Cavender, J. H. (2001). Manipulation of frontal EEG asymmetry through biofeedback alters self-reported emotional responses and facial EMG. Psychophysiology, 38, 685–693

    Article  PubMed  Google Scholar 

  • Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., & Kounios, J. (2007). EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clinical Neuropsychologist, 21(1), 110–129

    Article  PubMed  Google Scholar 

  • Bauer, R. H. (1976). Short-term memory: EEG alpha correlates and the effect of increased alpha. Behavioral Biology, 17(4), 425–433

    Article  PubMed  Google Scholar 

  • Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex re flects focused internal attention. Neuropsychologia, 56, 393–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger, H. (1929). About the human electrocephalogram. Archives for Psychiatry and Nervous Diseases, 87(1), 527–570

    Article  Google Scholar 

  • Biswas, A. (2019). Alpha neurofeedback has a positive effect for participants who are unable to sustain their alpha activity. ENeuro, 6(4), 1–10

    Article  Google Scholar 

  • Bouyer, J. J., Tilquin, C., & Rougeul, A. (1983). Thalamic rhythms in cat during quiet wakefulness and immobility. Electroencephalography and Clinical Neurophysiology, 55(2), 180–187

    Article  PubMed  Google Scholar 

  • Brown, B. B. (1970). Recognition of aspects of consciousness through association with Eeg alpha activity represented by a light signal. Psychophysiology, 6(4), 442–452

    Article  PubMed  Google Scholar 

  • Brunsdon, V. E. A., Bradford, E. E. F., & Ferguson, H. J. (2019). Sensorimotor mu rhythm during action observation changes across the lifespan independently from social cognitive processes. Developmental Cognitive Neuroscience, 38, 100659

    Article  PubMed  PubMed Central  Google Scholar 

  • Budzynski, T. H., Budzynski, H. K., Evans, J. R., & Abarbanel, A. (2009). Introduction to quantitative EEG and neurofeedback . (2nd ed.). Academic Press.

    Google Scholar 

  • Chase, M. H., & Harper, R. M. (1970). Somatomotor and visceromotor correlates of operantly conditioned 12–14 C-SEC sensorimotor cortical activity. Electroencephalography & Clinical Neurophysiology, 31(1), 85–92

    Article  Google Scholar 

  • Cohen, J. (1988a). Statistical power analysis for the behavioral sciences. (Vol. 53)Lawrence Earlbaum Associates.

    Google Scholar 

  • Cohen, J. (1988b). Statistical power for the social sciences. Laurence Erlbaum and Associates.

    Google Scholar 

  • Creutzfeldt, O., Grünewald, G., & Simonova, O., & Schmitz, H. (1969). Changes of the basic rhythms of the EEG during the performance of mental and visuomotor tasks. In Attention in neurophysiolog (pp. 146–148). Butterworths London.

  • Demos, J. N. (2019). Understanding Neurofeedback. In Getting Started with Neurofeedback (2nd ed., p. 281).

  • Dempster, T., & Vernon, D. (2009). Identifying indices of learning for alpha neurofeedback training. Applied Psychophysiology Biofeedback, 34(4), 309–318

    Article  PubMed  Google Scholar 

  • Feige, B., Scheffler, K., Esposito, F., Di Salle, F., Hennig, J., & Seifritz, E. (2005). Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. Journal of Neurophysiology, 93(5), 2864–2872

    Article  PubMed  Google Scholar 

  • Fernández, T., Harmony, T., Rodríguez, M., Bernal, J., Silva, J., Reyes, A., & Marosi, E. (1995). EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalography and Clinical Neurophysiology, 94(3), 175–182

    Article  PubMed  Google Scholar 

  • Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 1–13

    Article  Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734–748

    Article  PubMed  Google Scholar 

  • Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking : EEG alpha activity in professional vs novice dancers. NeuroImage, 46(3), 854–862

    Article  PubMed  Google Scholar 

  • Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks : Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53

    Article  PubMed  Google Scholar 

  • Glass, A. (1964). Mental arithmetic and blocking of the occipital alpha rhythm. Electroencephalography and Clinical Neurophysiology, 16(6), 595–603

    Article  PubMed  Google Scholar 

  • Glass, A., & Kwiatkowski, A. W. (1970). Power spectral density changes in the EEG during mental arithmetic and eye-opening. Psychologische Forschung, 33(2), 85–99

    Article  PubMed  Google Scholar 

  • Green, E. E., Green, A. M., & Walters, E. D. (1974). Alpha-theta biofeedback training. Journal of Biofeedback, 2, 7–13

    Google Scholar 

  • Groppe, D. M., Bickel, S., Keller, C. J., Jain, S. K., Hwang, S. T., Harden, C., & Metha, A. D. (2013). Dominant frequencies of resting human brain activity as measured by the electrocorticogram. NeuroImage, 23(1), 233

    Google Scholar 

  • Hammond, D. C. (2011). What is neurofeedback : An update. Journal of Neurotherapy, 15, 305–336

    Article  Google Scholar 

  • Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology Biofeedback, 30(1), 1–10

    Article  PubMed  Google Scholar 

  • Hardt, J. V., & Kamiya, J. (1978). Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science, 1, 23–25

    Google Scholar 

  • Hassan, M. A., Fraser, M., Conway, B. A., Allan, D. B., & Vuckovic, A. (2015). The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: A pilot study. BMC Neurology, 15, 1–13

    Article  Google Scholar 

  • Heinrich, H., Gevensleben, H., & Strehl, U. (2007). Annotation: Neurofeedback—train your brain to train behaviour. Journal OfChild Psychology and Psychiatry, 48(1), 3–16

    Article  Google Scholar 

  • Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39, 526–530

    Article  PubMed  Google Scholar 

  • Hobson, H. M., & Bishop, D. V. M. (2016). Mu suppression—A good measure of the human mirror neuron system? Cortex, 82, 290–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Hord, D., & Barber, J. (1971). Alpha control: Effectiveness 0 f two kinds of feedback. Psychonomic Science, 25(3), 151–154

    Article  Google Scholar 

  • Hord, D. J., Tracy, M. L., Lubin, A., & Johnson, L. C. (1975). Effect of self-enhanced EEG alpha on performance and mood after two nights of sleep loss. Psychophysiology, 12(5), 585–590

    Article  PubMed  Google Scholar 

  • Ibric, V. L., & Dragomirescu, L. G. (2009). Chapter 16—Neurofeedback in pain management (T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. B. T.-I. to Q. E. E. G. and N. (Second E. Abarbanel (eds.); pp. 417–451). Academic Press.

  • Jensen, M. P., Gertz, K. J., Kupper, A. E., & Sherlin, L. H. (2013). Steps toward developing an EEG biofeedback treatment for chronic pain. Applied Psychophysiology Biofeedback, 38, 101–108

    Article  PubMed  Google Scholar 

  • Jensen, M. P., Rn, C. G., Tracy-smith, V., Stacy, C., Ma, B., & Othmer, S. (2007). Neurofeedback treatment for pain associated with complex regional pain syndrome type I. Journal of Neurotherapy, 11(1), 37–41

    Article  Google Scholar 

  • Kamiya, J., & Nowlis, D. (1970). The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology, 6(4), 476–484

    Article  PubMed  Google Scholar 

  • Klinger, E., Gregoire, K. C., & Barta, S. G. (1973). Physiological correlates of mental activity: Eye movements, alpha, and heart rate during imagining, suppression, concentration, search, and choice. Psychophysiology, 10(5), 471–477

    Article  PubMed  Google Scholar 

  • Kropotov, J. D. (2010). Quantitative EEG, event-related potentials and neurotherapy. Academic Press.

    Google Scholar 

  • Kropotov, J. D. (2016). Alpha rhythms. In Functional Neuromarkers for Psychiatry (1st ed.).

  • Lewine, J. D., & Orrison, W. W. (1995). Clinical electroencephalography and event-related potentials. In Functional Brain Imaging (1st ed., pp. 327–368).

  • Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O’Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-Regulation, 20(1), 83–99

    Article  PubMed  Google Scholar 

  • Ludwig, A. M., Deikman, A. J., Erickson, M. H., Vogel, G., Foulkes, D., Trosman, H., Bertini, M., Lewis, H. B., Witkin, H. A., Foulkes, D., Tart, C. T., Eeden, F. van, & Kilton, S. (1970). Altered states of consciousness. A book of readings (C. T. TART (ed.); Vol. 11, Issue 5).

  • Magosso, E., De Crescenzio, F., Ricci, G., Piastra, S., & Ursino, M. (2019). EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion. Computational Intelligence and Neuroscience.

  • Mann, C. A., Sterman, M. B., & Kaiser, D. A. (1996). Suppression of EEG rhythmic frequencies during somato-motor and visuo-motor behavior. International Journal of Psychophysiology, 23(1–2), 1–7

    Article  PubMed  Google Scholar 

  • Marino, R. J., Barros, T., Biering-sorensen, F., Stephen, P., Donovan, W. H., Graves, D. E., Haak, M., Ma, L. M. H., Priebe, M., Burns, S. P., Donovan, W. H., Graves, D. E., Haak, M., Ma, L. M. H., Priebe, M., Standards, I., & Neurological, F. (2003). International standards for neurological classification of spinal cord injury. Journal of Spinal Cord Medicine, 26, 50–56

    Article  Google Scholar 

  • Markovska-Simoska, S., Pop-Jordanova, N., & Georgiev, D. (2008). Simultaneous EEG and EMG biofeedback for peak performance in musicians. Prilozi, 29(1), 239–252

    PubMed  Google Scholar 

  • Martindale, C., & Armstrong, J. (1974). The relationship of creativity to cortical activation and its operant control. Journal of Genetic Psychology, 124(2), 311–320

    Article  PubMed  Google Scholar 

  • Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143–158

    PubMed  PubMed Central  Google Scholar 

  • McFarland, D. J., McCane, L. M., David, S. V., & Wolpaw, J. R. (1997). Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology, 103(3), 386–394

    Article  PubMed  Google Scholar 

  • Mikicin, M., & Kowalczyk, M. (2015). Audio-visual and autogenic relaxation alter amplitude of alpha EEG band, causing improvements in mental work performance in athletes. Applied Psychophysiology and Biofeedback, 40, 219–227

    Article  PubMed  Google Scholar 

  • Mikicin, M., Orzechowski, G., Jurewicz, K., & Paluch, K. (2015). Brain-training for physical performance: A study of EEG-neurofeedback and alpha relaxation training in athletes. Acta Neurobiologiae Experimentalis, 75, 434–445

    PubMed  Google Scholar 

  • Miró, J., Castarlenas, E., de la Vega, R., Roy, R., Solé, E., Tomé-Pires, C., & Jensen, M. (2016). Psychological Neuromodulatory Treatments for Young People with Chronic Pain. Children, 3(4), 41

    Article  PubMed Central  Google Scholar 

  • Niedermeyer, E., & Silva, F. L. Da. (1999). The normal EEG of the waking adult (5th Edn).

  • Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115(10), 2292–2307

    Article  PubMed  Google Scholar 

  • Nunez, P. L. (2017). Electroencephalography. In Neuroscience and biobehavioral psychology.

  • Nunez, P. L., & Pilgreen, K. L. (1991). The spline-laplacian in clinical neurophysiology: A method to improve EEG spatial resolution. Journal of Clinical Neurophysiology, 8(4), 397–413

    Article  PubMed  Google Scholar 

  • Nunez, P. L., & Psychology, B. (2017). Electroencephalography. In J. Stein (Ed.), Reference module in neuroscience and biobehavioral psychology.

  • Perez-Borja, C., Chatrian, G. E., Tyce, F. A., & Rivers, M. H. (1962). Electrographic patterns of the occipital lobe in man: A topographic study based on use of implanted electrodes. Electroencephalography and Clinical Neurophysiology, 14(2), 171–182

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., & Lopes, F. H. (1999). Event-related EEG / MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110, 1842–1857

    Article  PubMed  Google Scholar 

  • Plotkin, W. B., & Rice, K. M. (1981). Biofeedback as a Placebo: Anxiety reduction facilitated by training in either suppression or enhancement of alpha brainwaves. Journal of Consulting and Clinical Psychology, 49(4), 590–596

    Article  PubMed  Google Scholar 

  • Regestein, Q. R., Buckland, G. H., & Pegram, G. V. (1973). Effect of daytime alpha rhythm maintenance on subsequent sleep. Psychosomatic Medicine, 35(5), 415–418

    Article  PubMed  Google Scholar 

  • Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human Brain Mapping, 30(4), 1168–1187

    Article  PubMed  Google Scholar 

  • Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), 1–10

    Article  Google Scholar 

  • Rosner, B. (2011). Fundamentals of biostatistics. Brooks/Cole.

    Google Scholar 

  • Roy, R., de la Vega, R., Jensen, M. P., & Miró, J. (2020). Neurofeedback for pain management: A systematic review. Frontiers in Neuroscience, 14, 671

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiff, S. J. (2006). Dangerous phase. Neuroinformatics, 3(4), 315–318

    Article  Google Scholar 

  • Schmeidler, G., & Lewis, L. (1971). Mood changes after alpha feedback training. 709–710.

  • Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304

    Article  Google Scholar 

  • Sterman, M. B., Wyrwicka, W., & Roth, S. (1969). Electrophysiological correlates and neural substrates of alimentary behavior in the cat. Annals of the New York Academy of Sciences, 157(2), 723–739

    Article  PubMed  Google Scholar 

  • Thompson, L. W., & Obrist, W. D. (1964). EEG correlates of verbal learning and overlearning. Electroencephalography and Clinical Neurophysiology, 16(4), 332–342

    Article  PubMed  Google Scholar 

  • Vučković, A., Altaleb, M. K. H., Fraser, M., McGeady, C., & Purcell, M. (2019). EEG Correlates of self-managed neurofeedback treatment of central neuropathic pain in chronic spinal cord injury. Frontiers in Neuroscience, 13, 1–17

    Article  Google Scholar 

  • Vuckovic, A., Hasan, M. A., Fraser, M., Conway, B. A., Nasseroleslami, B., & Allan, D. B. (2014). Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. The Journal of Pain, 15(6), 645–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitmore, N. W., & Lin, S. (2016). Unmasking local activity within local fi eld potentials ( LFPs ) by removing distal electrical signals using independent component analysis. NeuroImage, 132, 79–92

    Article  PubMed  Google Scholar 

  • Wyrwicka, W., & Sterman, M. B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology and Behavior, 3(5), 703–707

    Article  Google Scholar 

  • Yao, D., Qin, Y., Hu, S., Dong, L., Bringas, M. L., & Sosa, P. A. V. (2019). Which reference should we use for EEG and ERP practice ? Brain Topography, 32(4), 530–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Purcell and Dr. Mclean, Southern General Hospital, Glasgow, for choosing participants of the study and to all participants for taking part. We also thanks Dr. Vuckovic, University of Glasgow, for her valuable comments on this manuscript.

Funding

This work has been partially funded by the MRC grant G0902257/1, the Glasgow Research Partnership in Engineering, and by NED University of Pakistan Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Contributions

MAH contributed in the study design, data processing, analysis, and manuscript writing. HS contributed in data processing, data analysis, drafting the manuscript and figures editing. HRK and SAQ contributed in data processing and help in writing the manuscript. MF contributed in study design and subject’s recruitment.

Corresponding author

Correspondence to Muhammad A. Hasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.A., Shahid, H., Khan, H.R. et al. Distinguishing Voluntarily Upregulation of Localized Central Alpha from Widespread Posterior Alpha. Appl Psychophysiol Biofeedback 46, 183–194 (2021). https://doi.org/10.1007/s10484-021-09511-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-021-09511-5

Keywords

Navigation