Skip to main content

Advertisement

Log in

The Effectiveness of Neurofeedback and Stimulant Drugs in Treating AD/HD: Part II. Replication

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

This study replicated T. R. Rossiter and T. J. La Vaque (1995) with a larger sample, expanded age range, and improved statistical analysis. Thirty-one AD/HD patients who chose stimulant drug (MED) treatment were matched with 31 patients who chose a neurofeedback (EEG) treatment program. EEG patients received either office (n = 14) or home (n = 17) neurofeedback. Stimulants for MED patients were titrated using the Test of Variables of Attention (TOVA). EEG (effect size [ES] = 1.01–1.71) and MED (ES = 0.80–1.80) groups showed statistically and clinically significant improvement on TOVA measures of attention, impulse control, processing speed, and variability in attention. The EEG group demonstrated statistically and clinically significant improvement on behavioral measures (Behavior Assessment System for Children, ES = 1.16–1.78, and Brown Attention Deficit Disorder Scales, ES = 1.59). TOVA gain scores for the EEG and MED groups were not significantly different. More importantly, confidence interval and nonequivalence null hypothesis testing confirmed that the neurofeedback program produced patient outcomes equivalent to those obtained with stimulant drugs. An effectiveness research design places some limitations on the conclusions that can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association. (1994). Diagnostic and statistical maual of mental disorders (4th ed.). Washington, DC: Author.

  • Anderson, S., & Hauck, W. W. (1983). A new procedure for testing equivalence in comparative bioavailability and other clinical trials. Communications in Statistics—Theory and Methods, 12, 2663–2692.

    Google Scholar 

  • Barkley, R. A. (1990). Attention deficit hyperactivity disorder: A handbook for diagnosis and treatment. New York: Guilford Press.

    Google Scholar 

  • Brown, T. E. (1996). Brown Attention-Deficit Disorder Scales. San Antonio, TX: Psychological Corporation.

    Google Scholar 

  • Clarke, G. N. (1995). Improving the transition from basic efficacy research to effectiveness studies: Methodological issues and procedures. Journal of Consulting and Clinical Psychology, 63, 718–725.

    PubMed  Google Scholar 

  • DuPaul, G. J., Barkley, R. A., & Connor, D. E. (1998). Stimulants. In R. A. Barkley (Ed.), Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment (2nd ed., pp. 263–293). New York: Guilford Press.

    Google Scholar 

  • Firestone, P. (1982). Factors associated with children’s adherence to stimulant medication. American Journal of Orthopsychiatry, 52(3), 447–457.

    Article  PubMed  Google Scholar 

  • Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback treatment for attention-deficit/hyperactivty disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28(1), 1–12.

    PubMed  Google Scholar 

  • Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12–19.

    PubMed  Google Scholar 

  • Kaufman, A., & Kaufman, N. (1990). Kaufman Brief Intelligence Test. Circle Pines, MN: AGS Publishing.

    Google Scholar 

  • Kazdin, A. E. (2003). Research design in clinical psychology (4th ed.). Boston: Allyn and Bacon.

    Google Scholar 

  • Leark, R. A., Dupuy, T. R., Greenberg, L. M., Corman, C. L., & Kindschi, C. L. (1996). Test of Variables of Attention Professional Manual Version 7.0. Available from Universal Attention Disorders, 4281 Katella, Suite 215, Los Alamitos, CA 90720.

    Google Scholar 

  • Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report. Biofeedback and Self-Regulation, 3, 293–306.

    Google Scholar 

  • Monastra, V. J., Monastra, D. M., & George, S. (2002). The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 27(4), 231–249.

    PubMed  Google Scholar 

  • Poly Software International. (2002). ProStat Version 3 (Computer software). Pearl River, NY.

  • Reynolds, C. R., & Kamphaus, R. W. (1992). Behavior Assessment System for Children manual. Available from American Guidance Service, 4201 Woodland Road, Circle Pines, MN 55014.

    Google Scholar 

  • Riccio, C. A., Reynolds, C. R., & Lowe, P. A. (2001). Clinical applications of continuous performance tests: Measuring attention and impulsive responding in children and adults. New York: Wiley.

    Google Scholar 

  • Rossiter, T. R. (1998). Patient directed neurofeedback for AD/HD. Journal of Neurotherapy, 2, 54–64.

    Google Scholar 

  • Rossiter, T. R. (2002). Neurofeedback for AD/HD: A ratio feedback case study and tutorial. Journal of Neurotherapy, 6, 9–35.

    Google Scholar 

  • Rossiter, T. R. (2004). The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: Part I. review of methodological issues. Applied Psychophysiology and Biofeedback, 29, 95–112.

    PubMed  Google Scholar 

  • Rossiter, T. R., & La Vaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating attention deficit hyperactivity disorders. Journal of Neurotherapy, 1, 48–59.

    Google Scholar 

  • Schachter, H., Pham, B., King, J., Langford, S., & Moher, D. (2001). How efficacious and safe is short-acting methylphenidate for the treatment of attention-deficit disorder in children and adolescents? A meta-analysis. Canadian Medical Association Journal, 165, 1475–1488.

    PubMed  Google Scholar 

  • Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15, 657–680.

    PubMed  Google Scholar 

  • Stevens, J. S. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Stevens, J. S. (1999). Intermediate statistics: A modern approach (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Westlake, W. J. (1981). Bioequivalence testing—A need to rethink. Biometrics, 37, 591–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rossiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossiter, T. The Effectiveness of Neurofeedback and Stimulant Drugs in Treating AD/HD: Part II. Replication. Appl Psychophysiol Biofeedback 29, 233–243 (2004). https://doi.org/10.1007/s10484-004-0383-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-004-0383-4

Navigation