Skip to main content
Log in

Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Based on the nonlinear constitutive equation, a piezoelectric semiconductor (PSC) fiber under axial loads and Ohmic contact boundary conditions is investigated. The analytical solutions of electromechanical fields are derived by the homopoty analysis method (HAM), indicating that the HAM is efficient for the nonlinear analysis of PSC fibers, along with a rapid rate of convergence. Furthermore, the nonlinear characteristics of electromechanical fields are discussed through numerical results. It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load, and the piezoelectric effect is weakened by an applied electric field. With the increase in the initial carrier concentration, the electric potential decreases, and owing to the screening effect of electrons, the distribution of electromechanical fields tends to be symmetrical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HICKERNELL, F. S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(5), 737–745 (2005)

    Article  Google Scholar 

  2. QIN, Y., WANG, X. D., and WANG, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. nature, 451(7180), 809–813 (2008)

    Article  Google Scholar 

  3. LIU, Y., YANG, Q., ZHANG, Y., YANG, Y. Z., and WANG, Z. L. Nanowire piezo-phototronic photodetector: theory and experimental design. Advance Materials, 24(11), 1410–1417 (2012)

    Article  Google Scholar 

  4. WANG, Z. L. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano, 6(5), 3760–3766 (2012)

    Article  Google Scholar 

  5. WANG, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 5(6), 540–552 (2010)

    Article  Google Scholar 

  6. HUTSON, A. R. and WHITE, D. L. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33(1), 40–47 (1962)

    Article  Google Scholar 

  7. GAVINI, A. and CARDONA, M. Modulated piezoreflectance in semiconductor. Physical Review B, 1(2), 672–682 (1970)

    Article  Google Scholar 

  8. CHATTOPADHYAY, D. Piezoelectric and deformation potential acoustic scattering mobility of a two-dimensional electron gas in quantum wells. Physica Status Solidi (B), 135(1), 409–413 (2010)

    Article  Google Scholar 

  9. ZHANG, X. B., TALIERCIO, T., KOLLIAKOS, S., and LEFEBVRE, P. Influence of electron-phonon interaction on the optical properties of III nitride semiconductors. Journal of Physics: Condensed Matter, 13(32), 7053–7074 (2001)

    Google Scholar 

  10. SAKAI, K., FUKUYAMA, A., TOYODA, T., and IKARI, T. Piezoelectric photothermal spectra of Co doped ZnO semiconductor. Japanese Journal of Applied Physics, 41(5), 3371–3373 (2002)

    Article  Google Scholar 

  11. HE, J. H., HSIN, C. L., LIU, J., CHEN, L. J., and WANG, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 19(6), 781–784 (2007)

    Article  Google Scholar 

  12. ZHOU, J., GU, Y. D., HU, Y. F., MAI, W. J., YEH, P. H., BAO, G., SOOD, A. K., POLLA, D. L., and WANG, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 94(19), 191103 (2009)

    Article  Google Scholar 

  13. KO, S. H., LEE, D., KANG, H. W., NAM, K. H., YEO, J. Y., HONG, S. J., GRIGOROPOULOS, C. P., and SUNG, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Letters, 11(2), 666–671 (2011)

    Article  Google Scholar 

  14. YANG, J. S. An anti-plane crack in a piezoelectric semiconductor. International Journal of Fracture, 136(1–4), L27–L32 (2005)

    Article  MATH  Google Scholar 

  15. HU, Y. T., ZENG, Y., and YANG, J. S. A mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. International Journal of Solids and Structures, 44, 3928–3938 (2007)

    Article  MATH  Google Scholar 

  16. SLADEK, J., SLADEK, V., PAN, E., and WUNSCHE, M. Fracture analysis in piezoelectric semiconductor under a thermal load. Engineering Fracture Mechanics, 126, 27–39 (2014)

    Article  Google Scholar 

  17. ZHAO, M. H., PAN, Y. B., FAN, C. Y., and XU, G. T. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. International Journal of Solids and Structures, 94–95, 50–59 (2016)

    Article  Google Scholar 

  18. FAN, C. Y., YAN, Y., XU, G. T., and ZHAO, M. H. Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Engineering Fracture Mechanics, 165, 183–196 (2016)

    Article  Google Scholar 

  19. ZHANG, Q. Y., FAN, C. Y., XU, G. T., and ZHAO, M. H. Iterative boundary element method for crack analysis of two-dimensional piezoelectric semiconductor. Engineering Analysis with Boundary Elements, 83, 87–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26(2), 025030 (2017)

    Article  Google Scholar 

  21. LUO, Y. X., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122(20), 204502 (2017)

    Article  Google Scholar 

  22. YANG, W. L., HU, Y. T., and YANG, J. S. Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 6(2), 025902 (2019)

    Article  MathSciNet  Google Scholar 

  23. LUO, Y. X., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341–348 (2018)

    Article  Google Scholar 

  24. WANG, G. L., LIU, J. X., and LIU, X. L. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 124(9), 095402 (2018)

    Article  Google Scholar 

  25. DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43, 22–28 (2018)

    Article  Google Scholar 

  26. JIN, Z. H. and YANG, J. S. Analysis of a sandwiched piezoelectric semiconducting thermoelectric structure. Mechanics Research Communications, 98, 31–36 (2019)

    Article  Google Scholar 

  27. CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49(5), 3140–3148 (2020)

    Article  Google Scholar 

  28. ZHAO, M. H., YANG, C. H., FAN, C. Y., and ZHANG, Q. Y. A shooting method for nonlinear boundary value problems in a thermal piezoelectric semiconductor plate. Zeitschrift für Angewandte Mathematik und Mechanik, 100(12), e201900302 (2020)

    Article  MathSciNet  Google Scholar 

  29. TIAN, R., LIU, J. X., PAN, E., and WANG, Y. S. SH waves in multilayered piezoelectric semiconductor plates with imperfect interfaces. European Journal of Mechanics-A/Solids, 81, 103961 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. ZHAO, M. H., ZHANG, Q. Y., and FAN, C. Y. An efficient iteration approach for nonlinear boundary value problems in 2D piezoelectric semiconductor. Applied Mathematical Modelling, 74, 170–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. YANG, G. Y., DU, J. K., WANG, J., and YANG, J. S. Extension of piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 229(11), 4663–4676 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. GUO, M. K., LI, Y., QIN, G. S., and ZHAO, M. H. Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mechanica, 230, 1825–1841 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. LIAO, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  34. DMMAIRRY, G. and FAZELI, M. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Communications in Nonlinear Science and Numerical Simulation, 14(2), 489–499 (2009)

    Article  Google Scholar 

  35. GAO, L. M., WANG, J., ZHONG, Z., and DU, J. K. An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mechanica, 208, 249–258 (2009)

    Article  MATH  Google Scholar 

  36. WU, R. X., WANG, J., DU, J. K., HUANG, D. J., YAN, W., and HU, Y. T. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(1), 30–39 (2012)

    Article  Google Scholar 

  37. WU, R. X., WANG, J., DU, J. K., HU, Y. T., and HU, H. P. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method. Numerical Algorithms, 59, 213–226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. LIN, X., HUANG, Y., ZHAO, Y., and WANG, T. S. Large deformation analysis of a cantilever beam made of axially functionally graded material by homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 40(10), 1375–1386 (2019) https://doi.org/10.1007/s10483-019-2515-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoyun Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11702251 and 12002316)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Ma, Z., Lu, C. et al. Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. Appl. Math. Mech.-Engl. Ed. 42, 665–676 (2021). https://doi.org/10.1007/s10483-021-2726-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2726-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation