Skip to main content
Log in

Effects of nozzle and fluid properties on the drop formation dynamics in a drop-on-demand inkjet printing

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The droplet formation dynamics of a Newtonian liquid in a drop-on-demand (DOD) inkjet process is numerically investigated by using a volume-of-fluid (VOF) method. We focus on the nozzle geometry, wettability of the interior surface, and the fluid properties to achieve the stable droplet formation with higher velocity. It is found that a nozzle with contracting angle of 45° generates the most stable and fastest single droplet, which is beneficial for the enhanced printing quality and high-throughput printing rate. For this nozzle with the optimal geometry, we systematically change the wettability of the interior surface, i.e., different contact angles. As the contact angle increases, pinch-off time increases and the droplet speed reduces. Finally, fluids with different properties are investigated to identify the printability range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ρ:

density (kg·m-3)

p :

pressure (Pa)

μ:

dynamic viscosity (Pa · s)

F :

surface tension (N · m-1)

υ:

droplet velocity (m · s-1)

g :

gravitational acceleration (m · s-2)

κ:

curvature of gas-liquid interface

ϕ:

nozzle wall contact angle (°)

θ:

nozzle contracting angle (°)

υe :

pinch-off speed (m · s-1)

αg :

volume fraction of gas phase

D n :

nozzle diameter (m)

tb 1 :

primary pinch-off time (s)

tb 2 :

end pinch-off time (s).

References

  1. YUZO, I., SHINJI, K., YOSHIMITSU, A., and YASUHIRO, A. Inkjet fabrication of polymer microlens for optical-i/o chip packaging. Japanese Journal of Applied Physics, 39(3B), 1490–1493 (2000)

    Google Scholar 

  2. BERG, M. V. D., SMITH, P. J., PERELAER, J., SCHROF, W., KOLTZENBURG, S., and SCHUBERT, U. S. Inkjet printing of polyurethane colloidal suspensions. Soft Matter, 3(2), 238–243 (2007)

    Article  Google Scholar 

  3. STRINGER, J. and DERBY, B. Limits to feature size and resolution in inkjet printing. Journal of the European Ceramic Society, 29(5), 913–918 (2009)

    Article  Google Scholar 

  4. WIJSHOFF, H. The dynamics of the piezo inkjet printhead operation. Physics Reports, 491(4), 77–177 (2010)

    Article  Google Scholar 

  5. ASTRE JON-PITA, J. R., BAXTER, W. R. S., MORGAN, J., TEMPLE, S., MARTIN, G. D., and HUTCHINGS, I. M. Future, opportunities and challenges of inkjet technologies. Atomization and Sprays, 23(6), 1490–1493 (2013)

    Google Scholar 

  6. BOS, A. V. D., MEULEN, M. J. V. D., DRIESSEN, T., BERG, M. V. D., REINTEN, H., WIJSHOFF, H., VERSLUIS, M., and LOHSE, D. Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Physical Review Applied, 1(1), 0140041 (2014)

    Google Scholar 

  7. HE, B., YANG, S., QIN, Z., WEN, B., and ZHANG, C. The roles of wettability and surface tension in droplet formation during inkjet printing. Scientific Reports, 7(1), 11841 (2017)

    Article  Google Scholar 

  8. DERBY, B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 40(1), 395–414 (2010)

    Article  Google Scholar 

  9. BASARAN, O. A., GAO, H., and BHAT, P. P. Nonstandard inkjets. Annual Review of Fluid Mechanics, 45(1), 85–113 (2013)

    Article  MATH  Google Scholar 

  10. MARTIN, G. D., HOATH, S. D., and HUTCHINGS, I. M. Inkjet printing —the physics of manipulating liquid jets and drops. Journal of Physics: Conference Series, 105(1), 012001 (2008)

    Google Scholar 

  11. LIOU, T. M., CHAN, C. Y., and SHIH, K. C. Effects of actuating waveform, ink property, and nozzle size on piezoelectrically driven inkjet droplets. Microfluidics and Nanofluidics, 8(5), 575–586 (2010)

    Article  Google Scholar 

  12. RAYLEIGH, L. On the instability of jets. Proceedings of the London Mathematical Society, 10, 4–13 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  13. SAVART, F. Memoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi. Annales de Chimie et de Physique, 53, 337–386 (1833)

    Google Scholar 

  14. RAYLEIGH, L. On the instability of a cylinder of viscous liquid under capillary force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(207), 145–154 (1892)

    Article  MATH  Google Scholar 

  15. PIMBLEY, W. T. and LEE, H. C. Satellite droplet formation in a liquid jet. IBM Journal of Research and Development, 21(1), 21–30 (1977)

    Article  Google Scholar 

  16. YUEN, M. C. Non-linear capillary instability of a liquid jet. Journal of Fluid Mechanics, 33(1), 151–163 (1968)

    Article  MATH  Google Scholar 

  17. EGGERS, J. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, 69(3), 865–930 (1997)

    Article  MATH  Google Scholar 

  18. NOTZ, P. K., CHEN, A. U., and BASARAN, O. A. Satellite drops: unexpected dynamics and change of scaling during pinch-off. Physics of Fluids, 13(3), 549–552 (2001)

    Article  MATH  Google Scholar 

  19. DONG, H., CARR, W. W., and MORRIS, J. F. Visualization of drop-on-demand inkjet: drop formation and deposition. Review of Scientific Instruments, 77(8), 085101 (2006)

    Article  Google Scholar 

  20. DONG, H., CARR, W. W., and MORRIS, J. F. An experimental study of drop-on-demand drop formation. Physics of Fluids, 18(7), 072102 (2006)

    Article  Google Scholar 

  21. CASTRE JON-PITA, J. R., MARTIN, G. D., HOATH, S. D., and HUTCHINGS, I. M. A simple large-scale droplet generator for studies of inkjet printing. Review of Scientific Instruments, 79(7), 075108 (2008)

    Article  Google Scholar 

  22. FAN, K. C, CHEN, J. Y., WANG, C. H., and PAN, W. C. Development of a drop-on-demand droplet generator for one-drop-fill technology. Sensors and Actuators A: Physical, 147(2), 649–655 (2008)

    Article  Google Scholar 

  23. KWON, K. S. Speed measurement of ink droplet by using edge detection techniques. Measurement, 42(1), 44–50 (2009)

    Article  Google Scholar 

  24. MATHUES, W., MCILORY, C, HARLEN, O. G., and CLASEN, C. Capillary breakup of suspensions near pinch-off. Physics of Fluids, 27(9), 093301 (2015)

    Article  Google Scholar 

  25. FROMM, J. E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM Journal of Research and Development, 28(3), 322–333 (1984)

    Article  Google Scholar 

  26. ADAMS, R. L. and ROY, J. A one-dimensional numerical model of a drop-on-demand inkjet. Journal of Applied Mechanics, 53(1), 193–197 (1986)

    Article  Google Scholar 

  27. REIS, N. and DERBY, B. Inkjet deposition of ceramic suspensions: modeling and experiments of droplet formation. Material Research Society Proceedings, 625, 117–122 (2000)

    Article  Google Scholar 

  28. FENG, J. Q. A general fluid dynamic analysis of drop ejection in drop-on-demand inkjet devices. Journal of Imaging Science and Technology, 46(5), 398–408 (2002)

    Google Scholar 

  29. AMBRAVANESWARAN, B., WILKES, E. D., and BASARAN, O. A. Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Physics of Fluids, 14(8), 2606–2621 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. YANG, A. S., YANG, J. C., and HONG, M. C. Droplet ejection study of a picojet printhead. Journal of Micromechanics and Microengineering, 16(1), 180–188 (2006)

    Article  Google Scholar 

  31. XU, Q. and BASARAN, O. A. Computational analysis of drop-on-demand drop formation. Physics of Fluids, 19(10), 102111 (2007)

    Article  MATH  Google Scholar 

  32. YANG, G. and LIBURDY, J. A. Droplet formation from a pulsed vibrating micro-nozzle. Journal of Fluids and Structures, 24(4), 576–588 (2008)

    Article  Google Scholar 

  33. LEIB, S. J. and GOLDSTEIN, M. E. Convective and absolute instability of a viscous liquid jet. The Physics of Fluids, 29(4), 952–954 (1986)

    Article  Google Scholar 

  34. ANANTHARAMAIAH, N., TAFRESHI, H. V., and POURDEYHIMI, B. A simple expression for predicting the inlet roundness of micro-nozzles. Journal of Micromechanics and Microengineering, 17(5), 31–39 (2007)

    Article  Google Scholar 

  35. LAI, J. M., HUANG, C. Y., CHEN, C. H., LINLIU, K., and LIN, J. D. Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic dynamics in a drop ejection process. Journal of Micromechanics and Microengineering, 20(1), 1–14 (2010)

    Article  Google Scholar 

  36. ROSELLO, M., MAITREJEAN, G., ROUX, D. C. D., JAY, R, BARBET, B., and XING, J. Influence of the nozzle shape on the breakup behavior of continuous inkjets. Journal of Fluids Engineering, 140(3), 1–8 (2017)

    Google Scholar 

  37. CASTREJON-PITA, J. R., MORRISON, N. F., HARLEN, O. G., MARTIN, G. D., and HUTCHINGS, I. M. Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. Physical Review E, 83(3), 1–12 (2011)

    Article  Google Scholar 

  38. MEIXNER, R. M., CIBIS, D., KRUEGER, K., and GOEBEL, H. Characterization of polymer inks for drop-on-demand printing systems. Microsystem Technologies, 14(8), 1137–1142 (2008)

    Article  Google Scholar 

  39. JANG, D., KIM, D., and MOON, J. Influence of fluid physical properties on inkjet printability. Langmuir, 25(5), 2629–2635 (2009)

    Article  Google Scholar 

  40. DERBY, B. and REIS, N. Inkjet printing of highly loaded particulate suspensions. MRS Bulletin, 28(11), 815–818 (2003)

    Article  Google Scholar 

  41. DERBY, B. Inkjet printing ceramics: from drops to solid. Journal of the European Ceramic Society, 31(14), 2543–2550 (2011)

    Article  Google Scholar 

  42. KIM, E. and BAEK, J. Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model. Physics of Fluids, 24(8), 082103 (2012)

    Article  Google Scholar 

  43. HIRT, C. W. and NICHOLS, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  44. BRACKBILL, J. U., KOTHE, D. B., and ZEMACH, C. A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. B. AQEEL would like to thank the Chinese Scholarship Council (CSC) for providing Chinese Government Scholarship (CGS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyu Lv or Yantao Yang.

Additional information

Citation: AQEEL, A. B., MOHASAN, M., LV, P. Y., YANG, Y. T., and DUAN, H. L. Effects of nozzle and fluid properties on the drop formation dynamics in a drop-on-demand inkjet printing. Applied Mathematics and Mechanics (English Edition, 40(9), 1239–1254 (2019) https://doi.org/10.1007/s10483-019-2514-7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeel, A.B., Mohasan, M., Lv, P. et al. Effects of nozzle and fluid properties on the drop formation dynamics in a drop-on-demand inkjet printing. Appl. Math. Mech.-Engl. Ed. 40, 1239–1254 (2019). https://doi.org/10.1007/s10483-019-2514-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2514-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation