Skip to main content
Log in

Effect of regularized delta function on accuracy of immersed boundary method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peskin, C. S. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25, 220–252 (1997)

    Article  MathSciNet  Google Scholar 

  2. Peskin, C. S. and McQueen, D. M. A three-dimensional computational method for blood flow in the heart I. immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys., 81, 372–405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dillion, R., Fauci, L. J., and Gaver, D. A microscale model of bacteria swimming, chemotaxis, and substrate transport. J. Theor. Biol., 177, 325–340 (1995)

    Article  Google Scholar 

  4. Fauci, L. J. and McDonald, A. Sperm motility in the presence of boundaries. B. Math. Biol., 57, 679–699 (1995)

    MATH  Google Scholar 

  5. Fauci, L. J. and Peskin, C. S. A computational model of aquatic animal locomotion. J. Comput. Phys., 77, 85–108 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bottino, D. C. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys., 147, 86–113 (1998)

    Article  MATH  Google Scholar 

  7. Fogelson, A. L. Continumm models of platelet aggregation: formulation and mechanical properties. SIAM J. Appl. Math., 52, 1089–1110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fauci, L. J. and Fogelson, A. L. Truncated Newton’s methods and the modeling of complex immersed elastic structures. Comm. Pure Appl. Math., 46, 787–818 (1993)

    Article  MathSciNet  Google Scholar 

  9. Eggleton, C. D. and Popel, A. S. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids, 10, 1834–1845 (1998)

    Article  Google Scholar 

  10. Tu, C. and Peskin, C. S. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Sci. Stat. Comput., 13(6), 1361–1376 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stockie, J. M. and Wetton, B. R. Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys., 154, 41–64 (1999)

    Article  MATH  Google Scholar 

  12. Stockie, J. M. and Wetton, B. R. Stability analysis for the immersed fiber problem. SIAM J. Appl. Math., 55, 1577–1591 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gong, Z. X., Huang, H. X., and Lu, C. J. Stability analysis of the immersed boundary method for a two-dimensional membrane with bending rigidity. Commun. Comput. Phys., 3(3), 704–723 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Beyer, R. P. and LeVeque, R. J. Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal., 29, 332–364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griffith, B. E. and Peskin, C. S. On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J. Comput. Phys., 208, 75–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lai, M. C. and Peskin, C. S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys., 160, 705–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gong, Z. X., Lu, C. J., and Huang, H. X. Accuracy analysis of immersed boundary method using method of manufactured solutions. Appl. Math. Mech. -Engl. Ed., 31(10), 1197–1208 (2010) DOI 10.1007/s10483-010-1353-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Lai, M. C. Simulations of the Flow Past an Array of Circular Cylinders as a Test of the Immersed Boundary Method, Ph. D. dissertation, New York University (1998)

  19. Steinberg, S. and Roache, P. J. Symbolic manipulation and computation fluid dynamics. J. Comput. Phys., 57, 251–284 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roache, P. J. Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque (1998)

    Google Scholar 

  21. Roache, P. J. Code verification by the method of manufactured solutions. J. Fluid Eng., 124(1), 4–10 (2002)

    Article  Google Scholar 

  22. Oberkampf, W. L. and Trucano, T. G. Validation Methodology in Computational Fluid Dynamics, American Institute of Aeronautics and Astronautics, Denver, 2000–2549 (2000)

    Google Scholar 

  23. Oberkampf, W. L. and Trucano, T. G. Verification and validation in computational fluid dynamics. Prog. Aero. Sci., 38, 209–272 (2002)

    Article  Google Scholar 

  24. Roy, C. J., Nelson, C. C., Smith, T. M., and Ober, C. C. Verification of Euler/Navier-Stokes codes using the method of manufactured solutions. Int. J. Numer. Mech. Fl., 44, 599–620 (2004)

    Article  MATH  Google Scholar 

  25. Bond, R. B., Ober, C. C., and Knupp, P. M. A manufactured solution for verifying CFD boundary conditions, part III. 36th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, San Francisco, 1966–1982 (2006)

    Google Scholar 

  26. Brunner, T. A. Development of a grey nonlinear thermal radiation diffusion verification problem. Transactions of the American Nuclear Society, 95, 876–878 (2006)

    Google Scholar 

  27. Eca, L., Hoekstra, M., Hay, A., and Pelletier, D. On the construction of manufactured solutions for one- and two-equation eddy-viscosity models. Int. J. Numer. Mech. Fl., 54, 119–154 (2007)

    Article  MATH  Google Scholar 

  28. Tremblay, D., Etienne, S., and Pelletier, D. Code verification and the method of manufactured solutions for fluid-structure interaction problems. 36th AIAA Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, San Francisco, 882–892 (2006)

    Google Scholar 

  29. Peskin, C. S. The immersed boundary method. Acta Numer., 11, 1–39 (2002)

    Article  MathSciNet  Google Scholar 

  30. Stockie, J. M. Analysis and Computation of Immersed Boundaries with Application to Pulp Fibers, Ph. D. dissertation, University of British Columbia (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-jing Lu  (鲁传敬).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11102108) and the Shanghai Leading Academic Discipline Project (No. B206)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Zx., Lu, Cj. & Huang, Hx. Effect of regularized delta function on accuracy of immersed boundary method. Appl. Math. Mech.-Engl. Ed. 33, 1453–1466 (2012). https://doi.org/10.1007/s10483-012-1635-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1635-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation