Skip to main content

Advertisement

Log in

Complex microbial communities inhabiting natural Cordyceps militaris and the habitat soil and their predicted functions

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Cordyceps militaris is a traditional Chinese medicinal food that is challenging to quality maintaining while mass cultivation. Many studies have found that abundant microbes inhabit Ophiocordyceps sinensis and perform important functions for their host. In this study, our objective was to reveal the microbial communities that inhabit C. militaris and analyze their potential functions. High-throughput sequencing of 16S rRNA and ITS genes was used to compare the diversity and composition of the bacterial and fungal communities associated with naturally occurring C. militaris collected from Yunnan Province, southwestern China. The diversity and richness of the microbial communities and the number of function genes of the bacteria were significantly higher in the habitat soil than in the fruiting body. The sclerotia and stromata samples shared the same microbiota and functions. The main bacterial phyla were Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria, and Ascomycota was the main fungal phylum. The growth-promoting bacteria Herbaspirillum and the plant probiotic Phyllobacterium, which may enhance C. militaris quality and facilitate its cultivation, were detected in the fruiting body samples. Genes related to metabolism were more abundant in the soil bacteria, while membrane transport genes were more abundant in the endophytic bacteria of C. militaris. Our study is the first to reveal the unexpectedly high diversity of the microbial communities and the bacterial functions inhabiting the natural C. militaris using high-throughput sequencing, and our results provide insights into mining the functions of microorganisms in the development and quality of C. militaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai Y, Muller DB, Srinivas G et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Baral B, Maharjan J (2012) In-vitro culture of Ophiocordyceps sinensis (Yarsagumba) and their associated endophytic fungi of Nepal Himalaya. Sci World 10:38–42

    Article  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  PubMed  Google Scholar 

  • Bergeijk DAV, Terlouw BR, Medema MH, Wezel GPV (2020) Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 18:546–558

    Article  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Guo H, Du Z et al (2009) Ecology-based screen identifies new metabolites from a Cordyceps-colonizing fungus as cancer cell proliferation inhibitors and apoptosis inducers. Cell Prolif 42:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crits-Christoph A, Diamond S, Butterfield CN, Thomas BC, Banfield JF (2018) Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558:440–444

    Article  CAS  PubMed  Google Scholar 

  • Dance A (2020) The search for microbial dark matter. Nature 582:301–303

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE et al (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–1000

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellin C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Felix JD, Velazquez E, Garcia-Fraile P et al (2018) Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Res Int 111:416–422

    Article  CAS  PubMed  Google Scholar 

  • Guo HJ, Sun BD, Gao H et al (2009a) Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J Nat Prod 72:2115–2119

    Article  CAS  PubMed  Google Scholar 

  • Guo HJ, Sun BD, Gao H et al (2009b) Trichocladinols A-C, cytotoxic metabolites from a Cordyceps-colonizing Ascomycete Trichodadium opacum. Eur J Org Chem 2009:5525–5530

    Article  Google Scholar 

  • Haas BJ, Gevers D, Earl AM et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamonts K, Trivedi P, Garg A et al (2018) Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol 20:124–140

    Article  CAS  PubMed  Google Scholar 

  • Huang WJ, Long CL, Lam E (2018) Roles of plant-associated microbiota in traditional herbal medicine. Trends Plant Sci 23:559–562

    Article  CAS  PubMed  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  PubMed  Google Scholar 

  • Liu L, Wang Z, Yu H et al (2008) Analysis of the bacterial diversity in intestines of Hepialus gonggaensis larvae. Acta Microbiol Sin 48:616–622

    CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menezes ID, de Matos GF, de Freitas KM, Jesus ED, Rouws LFM (2019) Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Braz J Microbiol 50:759–767

    Article  Google Scholar 

  • Monteiro RA, Balsanelli E, Wassem R et al (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196

    Article  CAS  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  • Oberhardt MA, Zarecki R, Gronow S et al (2015) Harnessing the landscape of microbial culture media to predict new organism-media pairings. Nat Commun 6:8493

    Article  CAS  PubMed  Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH et al (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7:e34847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao J, Shuai YY, Zeng X et al (2019) Comparison of chemical compositions, bioactive ingredients, and in vitro antitumor activity of four products of Cordyceps (Ascomycetes) strains from China. Int J Med Mushrooms 21:331–342

    Article  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Hardoim P, Doring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Han SK, Lee WH et al (2005) Distribution and in vitro fruiting of Cordyceps militaris in Korea. Mycobiology 33:178–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Zhang WM, Zhang YJ, Liu XZ (2012) The medicinal fungus Cordyceps militaris: research and development. Mycol Progress 11:599–614

    Article  Google Scholar 

  • Singh R, Negi PS, Ahmed Z (2009) Genetic variability assessment in medicinal caterpillar fungi Cordyceps spp. (Ascomycetes) in central Himalayas. India Int J Med Mushrooms 11:185–189

    Article  Google Scholar 

  • Slama HB, Cherif-Silini H, Chenari Bouket A et al (2019) Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front Microbiol 9:3236

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung GH, Hywel-Jones NL, Sung JM et al (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters WA, Jin Z, Youngblut N et al (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. PNAS 115:7368–7373

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen TC, Kang JC, Hyde KD et al (2014) Phenotypic marking of Cordyceps militaris fruiting-bodies and their cordycepin production. Chiang Mai J Sci 41:846–857

    CAS  Google Scholar 

  • Xia F, Liu Y, Shen GR, Guo LX, Zhou XW (2015) Investigation and analysis of microbiological communities in natural Ophiocordyceps sinensis. Can J Microbiol 61:104–111

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Chen X, Guo MY et al (2016a) High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity. Sci Rep 6:33437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia F, Liu Y, Guo MY et al (2016b) Pyrosequencing analysis revealed complex endogenetic microorganism community from natural DongChong XiaCao and its microhabitat. BMC Microbiol 16:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia YL, Luo FF, Shang YF et al (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Zhou X, Liu Y et al (2019) Composition and predictive functional analysis of bacterial communities inhabiting Chinese Cordyceps insight into conserved core microbiome. BMC Microbiol 19:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang Y, Zhang PF et al (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:4894

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang RH, Wang XL, Su JH et al (2015) Bacterial diversity in native habitats of the medicinal fungus Ophiocordyceps sinensis on Tibetan Plateau as determined using Illumina sequencing data. FEMS Microbiol Lett 362:fun004

    Article  Google Scholar 

  • Yeoh YK, Dennis PG, Paungfoo-Lonhienne C et al (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8(1):1–9

    Article  CAS  Google Scholar 

  • Yu HW, Wang ZK, Liu L et al (2008) Analysis of fungal diversity in intestines of Hepialus gonggaensis larvae. Acta Microbiol Sin 48:439–445

    CAS  Google Scholar 

  • Zhang YG, Liu SC, Liu HW, Liu XZ, Che YS (2009) Cycloaspeptides F and G, cyclic pentapeptides from a Cordyceps-colonizing isolate of Isaria farinosa. J Nat Prod 72:1364–1367

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Zhang S, Wang M, Bai FY, Liu XZ (2010) High diversity of the fungal community structure in naturally-occurring Ophiocordyceps sinensis. PLoS ONE 5:e15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Li EW, Wang CS, Li YL, Liu XZ (2012) Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology 3:2–10

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.: 31960001, 31870017, 21662048), the joint fund key project of Yunnan science and technology department—Yunnan University (No. 2018FY006), the Top Young Talents of Ten Thousand Program in Yunnan province. Expenditures of field studies and sample collections are funded by project No. 31960001; all expenditures of high throughput sequencing are funded by project No. 2018FY006; expenditures of student service fees are funded by project No. 31870017.

Author information

Authors and Affiliations

Authors

Contributions

HY conceived and designed the experiments; XZ, YW, QL, ZX and DT collected the samples; DT, YW and ZX performed the experiments; XZ analyzed the data and wrote the manuscript; HY and WL revised the manuscript.

Corresponding authors

Correspondence to Wen-Jun Li or Hong Yu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1551 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XM., Tang, DX., Li, QQ. et al. Complex microbial communities inhabiting natural Cordyceps militaris and the habitat soil and their predicted functions. Antonie van Leeuwenhoek 114, 465–477 (2021). https://doi.org/10.1007/s10482-021-01534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01534-6

Keywords

Navigation