Skip to main content
Log in

Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Accumulated evidence suggests that root exudates have a major role in mediating plant–microbe interactions in the rhizosphere. Here, we characterized tobacco root exudates (TREs) by GC–MS and nicotine, scopoletin, and octadecane were identified as three main components of TREs. Qualitative and quantitative chemotaxis assays revealed that Pseudomonas aeruginosa NXHG29 with antagonistic activity displayed positive chemotactic responses towards TREs and their three main components (nicotine, scopoletin, octadecane) and its enhanced chemotaxis were induced by these substances in a concentration-dependent manner. Furthermore, following GC–MS and chemotaxis analysis, nicotine was selected as the target for evaluation of the effect on NXHG29 regarding antagonism, growth, root colonization and biocontrol efficiency. Results of in vitro studies showed that nicotine as a sole carbon source could enhance growth of NXHG29 and significantly increased the antagonism of NXHG29. We also demonstrated that nicotine exerted enhancing effects on the colonization ability of NXHG29 on tobacco roots by combining CLSM observations with investigation of population level dynamics by selective dilution plating method. Results from greenhouse experiments suggested nicotine exhibited stimulatory effects on the biocontrol efficiency of NXHG29 against bacterial wilt and black shank on tobacco. The stimulatory effect of nicotine was affected by the concentration and timing of nicotine application and further supported by the results of population level of NXHG29 on tobacco roots. This is the first report on the enhancement effect of nicotine from TREs on an antagonistic bacterium for its root colonization, control of soil-borne pathogens, regarding the chemotaxis and in vitro antagonism and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant, Cell Environ 32:666–681

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, O’Toole GA, Lugtenberg BJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. MPMI 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environmen Microb 71:4951–4959

    Article  CAS  Google Scholar 

  • Craven R, Montie TC (1985) Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J Bacteriol 164:544–549

    PubMed  PubMed Central  CAS  Google Scholar 

  • Das SN, Dutta S, Kondreddy A, Chilukoti N, Pullabhotla SV, Vadlamudi S, Podile AR (2010) Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. J Plant Growth Regu 29:409–418

    Article  CAS  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microb Interact 15:1173–1180

    Article  Google Scholar 

  • Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37:68–74

    Article  Google Scholar 

  • Dutta S, Rani TS, Podile AR (2013) Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS ONE 8:e78369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • el Zahar Haichar F, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115

    PubMed  PubMed Central  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2 4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ Calif Agric Exp Stn 347. Berkeley USA (2nd edit)

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Huang Y, Ma L, Fang DH, Xi JQ, Zhu ML, Mo MH, Zhang KQ, Ji YP (2015) Isolation and characterisation of rhizosphere bacteria active against Meloidogyne incognita, Phytophthora nicotianae and the root knot–black shank complex in tobacco. Pest Manag Sci 71:415–422

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Lu G, Gai Y, Zheng C, Mu Z (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    Article  PubMed  CAS  Google Scholar 

  • Jia ZH, Yi JH, Su YR, Shen H (2011) Autotoxic substances in the root exudates from continuous tobacco cropping. Allelopathy J 27:87–96

    Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathol 44:693–695

    Google Scholar 

  • Köberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, Smalla K, Berg G (2013) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342:168–178

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tikhonovich IA (2003) Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology 72:37–41

    Article  CAS  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant Microb In 15:734–741

    Article  CAS  Google Scholar 

  • Lapidus IR, Schiller R (1976) Model for the chemotactic response of a bacterial population. Biophys J 16:779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Article  Google Scholar 

  • Li P, Ma L, Feng YL, Mo MH, Yang FX, Dai HF, Zhao YX (2012) Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. J Ind Microbial Biotechnol 39:1495–1505

    Article  CAS  Google Scholar 

  • Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM (2013) The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci 9:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379

    Article  CAS  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Liu X, Parales RE (2008) Chemotaxis of Escherichia coli to pyrimidines: a new role for the signal transducer Tap. J Bacteriol 190:972–979

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Li X, Cai K, Cai L, Lu N, Shi J (2015) Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Appl Soil Ecol 93:78–87

    Article  Google Scholar 

  • Lopez-de-Victoria G, Lovell CR (1993) Chemotaxis of Azospirillum species to aromatic compounds. Appl Environ Microbiol 59:2951–2955

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  PubMed  CAS  Google Scholar 

  • Lung SC, Leung A, Kuang R, Wang Y, Leung P, Lim BL (2008) Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase. Phytochemistry 69:365–373

    Article  PubMed  CAS  Google Scholar 

  • Mansoor FARRUKH, Sultana V, Ehteshamul-Haque S (2007) Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119

    Google Scholar 

  • Maurer KA, Zachow C, Seefelder S, Berg G (2013) Initial steps towards biocontrol in hops: successful colonization and plant growth promotion by four bacterial biocontrol agents. Agronomy 3:583–594

    Article  Google Scholar 

  • Qin GZ, Tian SP, Xu Y, Wan YK (2003) Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol Mol Plant P 62:147–154

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rani M, Sobti RC, Jain PK (1996) Plasmid-mediated degradation of o-phthalate and salicylate by a Moraxella sp. Biochem Biophys Res Commun 220:377–381

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sampedro I, Parales RE, Krell T, Hill JE (2014) Pseudomonas chemotaxis[J]. FEMS Microbiol Rev 39:17–46

    PubMed  Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S (2000) Use of Pseudomonas aerugiosa (Schroeter) Migula in the control of root rot–root knot disease complex on tomato. Nematol Medit 28:189–192

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Resistance against the damping-off fungus rhizoctonia solani systemically induced by the plant-growth-promoting rhizobacteria Pseudomonas aeruginosa (IE-6S+) and P fluorescens (CHA0). J Phytopathol 150:500–506

    Article  Google Scholar 

  • Simons M, Van Der Bij AJ, Brand I, De Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Yang C, Mei X, Shen S, Raza W, Shen Q, Xu Y (2013) The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Appl Soil Ecol 64:15–22

    Article  Google Scholar 

  • Tans-Kersten J, Guan Y, Allen C (1998) Ralstonia solanacearum pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence. Appl Environ Microbiol 64:4918–4923

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda TETSUO, Terayama KAZUYUKI, Kurihara K, Kobatake YONOSUKE (1975) Threshold phenomena in chemoreception and taxis in slime mold Physarum polycephalum. J Gen Physiol 65:223–234

    Article  PubMed  CAS  Google Scholar 

  • Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5:626–634

    Article  PubMed  Google Scholar 

  • Wang Y, Lu ZX, Wu H, Lv FX (2009) Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol 136:71–74

    Article  PubMed  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Wu K, Yuan S, Xun G, Shi W, Pan B, Guan H, Shen B, Shen Q (2015) Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index. Eur J Plant Pathol 141:667–677

    Article  CAS  Google Scholar 

  • Xu WM, Zhang ZH, Lei YY, Li HX (2010) GC-MS method for determining the banana root exudates. Chin J Trop Crops 8:1403–1408

    Google Scholar 

  • Xu WM, Han FF, He M, Hu DY, He J, Yang S, Song BA (2012) Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1 3 4-oxadiazole moiety. J Agr Food Chem 60:1036–1041

    Article  CAS  Google Scholar 

  • Xue QY, Chen Y, Li SM, Chen LF, Ding GC, Guo DW, Guo JH (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258

    Article  Google Scholar 

  • Yu HY, Liang HB, Shen GM, Sampietro, Diego A, Gao XX (2014) Effects of allelochemicals from tobacco root exudates on seed germination and seedling growth of tobacco. Allelopathy J 33:107

    Google Scholar 

  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:1–8

    Google Scholar 

  • Zhang G, Raza W, Wang X, Ran W, Shen Q (2012) Systemic modification of cotton root exudates induced by arbuscular mycorrhizal fungi and Bacillus vallismortis HJ-5 and their effects on Verticillium wilt disease. Appl Soil Ecol 61:85–91

    Article  CAS  Google Scholar 

  • Zhao B, Agblevor FA, Ritesh KC, Jelesko JG (2013) Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum L. Plant Cell. Tissue Org Cult (PCTOC) 113:121–129

    Article  CAS  Google Scholar 

  • Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. Biocontrol 45:223–243

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation Program of China (31200086, 31660023, 31460028, 31570108), Department of Science and Technology of Yunnan Province (2017FB020, 2017FA016), and China Tobacco Company (110201802010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Zheng, S.C., Zhang, T.K. et al. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29. Antonie van Leeuwenhoek 111, 1237–1257 (2018). https://doi.org/10.1007/s10482-018-1035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1035-7

Keywords

Navigation