Skip to main content

Advertisement

Log in

Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The symbiotic nitrogen fixing legumes play an essential role in sustainable agriculture. White clover (Trifolium repens L.) is one of the most valuable perennial legumes in pastures and meadows of temperate regions. Despite its great agriculture and economic importance, there is no detailed available information on phylogenetic assignation and characterization of rhizobia associated with native white clover plants in South-Eastern Europe. In the present work, the diversity of indigenous white clover rhizobia originating in 11 different natural ecosystems in North-Eastern Romania were assessed by a polyphasic approach. Initial grouping showed that, 73 rhizobial isolates, representing seven distinct phenons were distributed into 12 genotypes, indicating a wide phenotypic and genotypic diversity among the isolates. To clarify their phylogeny, 44 representative strains were used in sequence analysis of 16S rRNA gene and IGS fragments, three housekeeping genes (atpD, glnII and recA) and two symbiosis-related genes (nodA and nifH). Multilocus sequence analysis (MLSA) phylogeny based on concatenated housekeeping genes delineated the clover isolates into five putative genospecies. Despite their diverse chromosomal backgrounds, test strains shared highly similar symbiotic genes closely related to Rhizobium leguminosarum biovar trifolii. Phylogenies inferred from housekeeping genes were incongruent with those of symbiotic genes, probably due to occurrence of lateral transfer events among native strains. This is the first polyphasic taxonomic study to report on the MLSA-based phylogenetic diversity of indigenous rhizobia nodulating white clover plants grown in various soil types in South-Eastern Europe. Our results provide valuable taxonomic data on native clover rhizobia and may increase the pool of genetic material to be used as biofertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adiguzel A, Ogutcu H, Baris O, Karadayi M, Ulluce M, Sahin F (2010) Isolation and characterization of Rhizobium strains from wild vetch collected from high altitudes in Erzurum-Turkey. Rom Biotech Lett 15:5017–5024

    CAS  Google Scholar 

  • Andronov EE, Onishchuk OP, Kurchak ON, Provorov NA (2014) Population structure of the clover rhizobia Rhizobium leguminosarum bv. trifolii upon transition from soil into the nodular niche. Mikrobiologiia 83:500–508

    CAS  PubMed  Google Scholar 

  • Beattie GA, Handelsman J (1989) A rapid method for the isolation and identification of Rhizobium from root nodules. J Microbiol Methods 9:29–33. doi:10.1016/0167-7012(89)90027-4

    Article  Google Scholar 

  • Chang YL, Wang ET, Sui XH, Zhang XX, Chen WX (2011) Molecular diversity and phylogeny of rhizobia associated with Lablab purpureus (Linn.) grown in Southern China. Syst Appl Microbiol 34:276–284. doi:10.1016/j.syapm.2010.12.004

    Article  PubMed  Google Scholar 

  • Dai J, Liu X, Wang Y (2012) Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China. Genet Mol Res 11:2683–2693

    Article  CAS  PubMed  Google Scholar 

  • De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43:2384–2396. doi:10.1016/j.soilbio.2011.08.005

    Article  Google Scholar 

  • Dragomir N, Pet I, Dragomir C, Pet E, Cristea C, Rechitean D, Toth S, Fratila I (2009) Multifunctionality and sustainability of the utilisation of permanent pastures in Romania, under conditions of alternative utilisation. Organising Committee of the 15th European Grassland Federation Symposium, pp 87–90

  • Duodu S, Brophy C, Connolly J, Svenning MM (2008) Competitiveness of a native Rhizobium leguminosarum biovar trifolii strain for nodule occupancy is manifested during infection. Plant Soil 318:117–126. doi:10.1007/s11104-008-9822-y

    Article  Google Scholar 

  • Frioni L, Rodriguez A, Meerhoff M (2001) Differentiation of rhizobia isolated from native legume trees in Uruguay. Appl Soil Ecol 16(3):275–282

    Article  Google Scholar 

  • Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Evol Microbiol 44:151–158. doi:10.1099/00207713-44-1-151

    Google Scholar 

  • Griffith GS, Cresswell A, Jones S, Allen DK (2000) The nitrogen handling characteristics of white clover (Trifolium repens L.) cultivars and a perennial ryegrass (Lolium perenne L.) cultivar. J Exp Bot 51:1879–1892

    Article  CAS  PubMed  Google Scholar 

  • Hampl V, Pavlícek A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735. doi:10.1099/00207713-51-3-731

    Article  CAS  PubMed  Google Scholar 

  • Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008) Rhizobium multihospitium sp. nov. isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699. doi:10.1099/ijs.0.65568-0

    Article  CAS  PubMed  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    Article  Google Scholar 

  • Howieson JG, Yates RJ, O’Hara GW, Ryder M, Real D (2005) The interactions of Rhizobium leguminosarum biovar trifolii in nodulation of annual and perennial Trifolium spp. from diverse centres of origin. Aust J Exp Agric 45:199–207

    Article  Google Scholar 

  • Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:343–350. doi:10.1111/j.1365-2672.1979.tb00830.x

    Article  Google Scholar 

  • Josic D, Kuzmanovic S, Pivic R, Milicic B (2006) The competitive ability of different Rhizobium leguminosarum bv. trifolii inoculant strains. Rom Biotech Lett 11:2637–2641

    Google Scholar 

  • Josic D, Milicic B, Mladenovic-Drinic S, Jarak M (2008) Genodiversity of dominant Rhizobium leguminosarum bv. trifolii isolated from 11 types of soil in Serbia. Genetika 40:179–190. doi:10.2298/GENSR0802179J

    Article  Google Scholar 

  • Kovach WL (1999) MVSP-Multivariate Statistical Package for Windows, version 3.1. Kovach Computing Services, Pentraeth

  • Küçük C (2012) Tolerance of rhizobia isolated from Trifolium species in southeast region, Şanliurfa, Turkey. Afr J Agric Res 7(10):1462–1467. doi:10.5897/AJAR11.061

    Google Scholar 

  • Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ, Young JPW, Bailly X (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5:140133. doi:10.1098/rsob.140133

    Article  PubMed  PubMed Central  Google Scholar 

  • Laguerre G, Allard M-R, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laguerre G, Mavingui P, Allard M-R, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Amarger N (1996) Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529. doi:10.1016/S0038-0717(01)00210-3

    Article  CAS  Google Scholar 

  • Ledgard SF (2001) Nitrogen cycling in low input legume-based agriculture, with emphasis on legume/grass pastures. Plant Soil 228:43–59. doi:10.1023/A:1004810620983

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Evol Microbiol 39:365–367. doi:10.1099/00207713-39-3-365

    Google Scholar 

  • Maiden MCJ (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588. doi:10.1146/annurev.micro.59.030804.121325

    Article  CAS  PubMed  Google Scholar 

  • Marek-Kozaczuk M, Leszcz A, Wielbo J, Wdowiak-Wróbel S, Skorupska A (2013) Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Syst Appl Microbiol 36:252–258. doi:10.1016/j.syapm.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Mauchline TH, Hayat R, Roberts R, Powers SJ, Hirsch PR (2014) Assessment of core and accessory genetic variation in Rhizobium leguminosarum symbiovar trifolii strains from diverse locations and host plants using PCR-based methods. Lett Appl Microbiol 59:238–246. doi:10.1111/lam.12270

    Article  CAS  PubMed  Google Scholar 

  • Mazur A, Stasiak G, Wielbo J, Kubik-Komar A, Marek-Kozaczuk M, Skorupska A (2011) Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates. BMC Microbiol 11:123. doi:10.1186/1471-2180-11-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur A, Stasiak G, Wielbo J, Koper P, Kubik-Komar A, Skorupska A (2013) Phenotype profiling of Rhizobium leguminosarum bv. trifolii clover nodule isolates reveal their both versatile and specialized metabolic capabilities. Arch Microbiol 195:255–267. doi:10.1007/s00203-013-0874-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschetti G, Peluso A, Protopapa A, Anastasio M, Pepe O, Defez R (2005) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP–16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631. doi:10.1016/j.syapm.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Béna G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732. doi:10.1016/S1055-7903(03)00255-0

    Article  CAS  PubMed  Google Scholar 

  • Oleńska E, Małek W (2015) Genetic differentiation of Trifolium repens microsymbionts deriving from Zn-Pb waste-heap and control area in Poland. J Basic Microbiol 55:462–470. doi:10.1002/jobm.201400604

    Article  PubMed  Google Scholar 

  • Ormeno-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC et al (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13:735. doi:10.1186/1471-2164-13-735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Peeters A, Parente G, Le Gall A (2005) The place of temperate legumes (Trifolium, Onobrychis and Lotus spp.) in sustainable forage systems. Pastos 36:5–33

    Google Scholar 

  • Perret X, Broughton WJ (1998) Rapid identification of Rhizobium strains by targeted PCR fingerprinting. Plant Soil 204:21–34. doi:10.1023/A:1004370725605

    Article  CAS  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (= NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490. doi:10.1099/ijs.0.65621-0

    Article  PubMed  Google Scholar 

  • Rashid MH, Schäfer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109. doi:10.1016/j.syapm.2011.11.008

    Article  PubMed  Google Scholar 

  • Razec M-M (2014) Evaluation of biological nitrogen at Trifolium pratense, Trifolium repens and Lotus corniculatus, on harvesting cycles. Sci Pap Anim Sci Biotechnol 47:129–132

    Google Scholar 

  • Reeve W, O’Hara G, Chain P, Ardley J, Bräu L, Nandesena K, Tiwari R, Copeland A, Nolan M, Han C et al (2010a) Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers. Stand Genomic Sci 2:347–356. doi:10.4056/sigs.852027

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeve W, O’Hara G, Chain P, Ardley J, Bräu L, Nandesena K, Tiwari R, Malfatti S, Kiss H, Lapidus A et al (2010b) Complete genome sequence of Rhizobium leguminosarum bv trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum. Stand Genomic Sci 2:66–76. doi:10.4056/sigs.44642

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeve W, Tian R, De Meyer S, Melino V, Terpolilli J, Ardley J, Tiwari R, Howieson J, Yates R, O’Hara G et al (2013) Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1. Stand Genomic Sci 9:243–253. doi:10.4056/sigs.4488254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro RA, Ormeno-Orrillo E, Dall’Agnol RF, Graham PH, Martinez-Romero E, Hungria M (2013) Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164:740–748. doi:10.1016/j.resmic.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110. doi:10.1016/j.syapm.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Rochon JJ, Doyle CJ, Greef JM, Hopkins A, Molle G, Sitzia M, Scholefield D, Smith CJ (2004) Grazing legumes in Europe: a review of their status, management, benefits, research needs and future prospects. Grass Forage Sci 59:197–214. doi:10.1111/j.1365-2494.2004.00423.x

    Article  Google Scholar 

  • Rogel MA, Ormeno-Orrillo E, Martinez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104. doi:10.1016/j.syapm.2010.11.015

    Article  PubMed  Google Scholar 

  • Ruiz-Díez B, Fajardo S, del R de Felipe M, Fernández-Pascual M (2012) Characterization of rhizobia from legumes of agronomic interest grown in semi-arid areas of Central Spain relates genetic differences to soil properties. J Basic Microbiol 52:66–78. doi:10.1002/jobm.201100058

    Article  PubMed  Google Scholar 

  • Samoil C, Vîntu V, Saghin G, Iacob T, Popovici IC (2008) Strategies of using organic fertilizers on the permanent grassland from north-eastern Romania. Agronom Res Mold 134:35–40

    Google Scholar 

  • Santillana N, Ramírez-Bahena MH, García-Fraile P, Velázquez E, Zúñiga D (2008) Phylogenetic diversity based on rrs, atpD, recA genes and 16S–23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Arch Microbiol 189:239–247. doi:10.1007/s00203-007-0313-y

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A, Moawad H, Abd El-Rahim WM, Sadowsky MJ (2014) Near-full length sequencing of 16S rDNA and RFLP indicates that Rhizobium etli is the dominant species nodulating Egyptian winter Berseem clover (Trifolium alexandrinum L.). Syst Appl Microbiol 37:121–128. doi:10.1016/j.syapm.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  • Šimon T (2006) New Rhizobium leguminosarum bv. trifolii isolates: collection, identification and screening of efficiency in symbiosis with clover. Plant Soil Environ 52:105–110

    Google Scholar 

  • Slater FR, Bailey MJ, Tett AJ, Turner SL (2008) Progress towards understanding the fate of plasmids in bacterial communities. FEMS Microbiol Ecol 66:3–13. doi:10.1111/j.1574-6941.2008.00505.x

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco, p 573

    Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume—Rhizobium technology. Springer-Verlag, New York, pp 332–341

    Book  Google Scholar 

  • Stefan A, Rosu CM, Stedel C, Gorgan LD, Efrose RC (2015) RAPD-inferred genetic variability of some indigenous Rhizobium leguminosarum isolates from red clover (Trifolium pratense L.) nodules. Acta Biol Hung 66:316–325. doi:10.1556/018.66.2015.3.7

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S–23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655–3664. doi:10.1128/AEM.67.8.3655-3664.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX (2010) Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol 73:563–576. doi:10.1111/j.1574-6941.2010.00909.x

    CAS  PubMed  Google Scholar 

  • van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindström K, Eardly BD (2003) Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998. doi:10.1128/JB.185.10.2988-2998.2003

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Cauwenberghe J, Verstraete B, Lemaire B, Lievens B, Michiels J, Honnay O (2014) Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol 37:613–621. doi:10.1016/j.syapm.2014.08.002

    Article  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. IBP Handbook No. 15. Blackwell, Oxford

  • Vinuesa P, Rademaker JLW, de Bruijn FJ, Werner D (1998) Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S–23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54. doi:10.1016/j.ympev.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wielbo J, Marek-Kozaczuk M, Mazur A, Kubik-Komar A, Skorupska A (2010) Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules. Appl Environ Microbiol 76:4593–4600. doi:10.1128/AEM.00667-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wielbo J, Marek-Kozaczuk M, Kidaj D, Skorupska A (2011) Competitiveness of Rhizobium leguminosarum bv. trifolii strains in mixed inoculation of clover (Trifolium pratense). Pol J Microbiol 60:43–49

    PubMed  Google Scholar 

  • Xu KW, Zou L, Penttinen P, Wang K, Heng NN, Zhang XP, Chen Q, Zhao K, Chen YX (2015) Symbiotic effectiveness and phylogeny of rhizobia isolated from faba bean (Vicia faba L.) in Sichuan hilly areas China. Syst Appl Microbiol 38:515–523. doi:10.1016/j.syapm.2015.06.009

    Article  PubMed  Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34

    Article  PubMed  PubMed Central  Google Scholar 

  • Youseif SH, Abd El-Megeed FH, Ageez A, Cocking EC, Saleh SA (2014) Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Syst Appl Microbiol 37:560–569. doi:10.1016/j.syapm.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Executive Agency for Higher Education, Research, Development and Innovation Funding [PN-II-ID-PCE-2011-3-1011 funding grant; 292/2011]. The authors are grateful to Dr. Liliana Sfichi Duke for revising the English text and proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Flemetakis.

Ethics declarations

Conflict of interest

Rodica C. Efrose, Craita M. Rosu, Catalina Stedel, Andrei Stefan, Culita Sirbu, Lucian D. Gorgan, Nikolaos E. Labrou and Emmanouil Flemetakis declares that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efrose, R.C., Rosu, C.M., Stedel, C. et al. Molecular diversity and phylogeny of indigenous Rhizobium leguminosarum strains associated with Trifolium repens plants in Romania. Antonie van Leeuwenhoek 111, 135–153 (2018). https://doi.org/10.1007/s10482-017-0934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0934-3

Keywords

Navigation