Skip to main content
Log in

Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei)

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Screening for lactic acid bacteria (LAB) from fresh shrimp samples (Penaeus vannamei) collected from retail seafood markets in the Tunisian’s coast, resulted in the isolation of an Enterococcus strain termed Q1. This strain was selected for its antagonistic activity against pathogenic bacteria such as Listeria monocytogenes, Pseudomonas aeruginosa, Lactococcus garvieae and against fungi (Aspergillus niger and Fusarium equiseti). The Q1 strain was characterised using standard morphological and biochemical tests, growth assays at different temperatures, pH and salinity. 16S rRNA, rpoA and pheS gene sequencing, as well as the 16S-23S rRNA intergenic spacer analyses, were combined to identify strain Q1 as a strain of Enterococcus lactis. The bacteriocin produced by E. lactis Q1 is thermostable, active in the pH range from 4.0 to 9.0 and has a bactericidal mode of action. The enterocin P structural gene was detected by specific PCR in strain E. lactis Q1, which is in good agreement with SDS-PAGE data of the purified bacteriocin. A lack of significant antibiotic resistance genes and virulence determinants was confirmed by specific PCRs. This work provides the first description of an enterocin P producer E. lactis strain isolated from a fresh shrimp. Based on its safety properties (absence of haemolytic activity, virulence factors and antibiotic resistance genes), this strain has the potential to be used as a natural additive or adjunct protective culture in food biopreservation and/or probiotic culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Batdorj B, Dalgalarrondo M, Choiset Y, Pedroche J, Métro F, Prévost H, Chobert JM, Heartlé T (2006) Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol 101:837–848

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Bekker JP, van Wyk N, du Toit C, Dicks LMT, Kossmann J (2009) Exopolysaccharide production by lactose-hydrolyzing bacteria isolated from traditionally fermented milk. Int J Food Microbiol 131:260–264

    Article  CAS  PubMed  Google Scholar 

  • Bellomo G, Mangiagle A, Nicastro L, Frigerio G (1980) A controlled double-blind study of SF68 strain as a new biological preparation for the treatment of diarrhea in pediatrics. Curr Ther Res 28:927–936

    Google Scholar 

  • Ben Omar N, Castro A, Lucas R, Abriouel H, Yousif NMK, Franz CMAP, Holzapfel WH, Pérez-Pulido R, Martinez-Canamero M, Galvez A (2004) Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130

    Article  CAS  PubMed  Google Scholar 

  • Botina SG, Sukhodolets VV (2006) Speciation in bacteria: comparison of the 16S rRNA gene for closely related Enterococcus species. Russ J Gen 42:247–251

    Article  CAS  Google Scholar 

  • CA-SFM (2010) Antibiogram Committee of the French Microbiology Society: Recommendations report 2010. French Microbiology Society, Paris

    Google Scholar 

  • Cetinkaya Y, Falk P, Mayhall C (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13:686–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cintas LM, Casaus P, Havarstein LS, Hernandez PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50 are related to staphylococcal haemolysins. J Bacteriol 180:1988–1994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  PubMed  Google Scholar 

  • Cremonesi P, Castiglioni B, Malferrari G, Biunno I, Vimercati C, Moroni P, Morandi S, Luzzana M (2006) Technical note: improved method for rapid DNA extraction of mastitis pathogens directly from milk. J Dairy Sci 89:163–169

    Article  CAS  PubMed  Google Scholar 

  • Cruciata M, Sannino C, Ercolini D, Scatassa ML, De Filippis F, Mancuso I, La Storia A, Moschetti G, Settanni L (2014) Animal rennets as sources of dairy lactic acid bacteria. Appl Environ Microbiol 80:2050–2061

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vuyst L, Foulquié Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318

    Article  PubMed  Google Scholar 

  • Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, Chakraborty T (2007) Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 297:533–539

    Article  CAS  PubMed  Google Scholar 

  • Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptides resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33:24–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ghaish S, Dalgalarrondo M, Choiset Y, Sitohy M, Ivanova I, Haertlé T (2010) Screening of strains of lactococci isolated from Egyptian dairy products for their proteolytic activity. Food Chem 120:758–764

    Article  CAS  Google Scholar 

  • El-Ghaish S, Hadji-Sfaxi I, Ahmadova A, Choiset Y, Rabesona H, Sitohy M, Heartlé T, Chobert JM (2011) Characterization of two safe Enterococcus strains producing enterocins isolated from Egyptian dairy products. Benef Microbes 2:15–27

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos GM, Gold HS (2001) Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin Infect Dis 33:210–219

    Article  Google Scholar 

  • Foulquié-Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst I (2003) Isolation and biochemical characterization of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229

    Article  PubMed  Google Scholar 

  • Foulquié-Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  Google Scholar 

  • Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    Article  CAS  PubMed  Google Scholar 

  • Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  CAS  PubMed  Google Scholar 

  • Gaaloul N, Ben Braiek O, Berjeaud JM, Arthur T, Cavera VL, Chikindas ML, Hani K, Ghrairi T (2014a) Evaluation of antimicrobial activity and safety aspect of Enterococcus italicus GGN10 strain isolated from Tunisian bovine raw milk. J Food Saf 34:300–311

    Article  CAS  Google Scholar 

  • Gaaloul N, Ben Braiek O, Hani K, Chikindas ML, Ghrairi T (2014b) Isolation and characterization of large spectrum and multiple bacteriocin-producing Enterococcus faecium strain from raw bovine milk. J Appl Microbiol 118:343–355

    Article  PubMed  Google Scholar 

  • Ghrairi T, Manai M, Berjeaud JM, Frere J (2004) Antilisterial activity of lactic acid bacteria isolated from rigouta, a traditional Tunisian cheese. Appl J Microbiol 97:621–628

    Article  CAS  Google Scholar 

  • Ghrairi T, Frère J, Berjaud JM, Manai M (2005) Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese. Int J Food Microbiol 105:389–398

    Article  CAS  PubMed  Google Scholar 

  • Ghrairi T, Frère J, Berjeaud JM, Manai M (2008) Purification and characterization of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control 19:162–169

    Article  CAS  Google Scholar 

  • Giraffa G, Olivari AM, Neviani E (2000) Isolation of vancomycin- resistant Enterococcus faecium from Italian cheeses. Food Microbiol 17:671–677

    Article  CAS  Google Scholar 

  • Hugas M, Garriga M, Aymerich MT (2003) Functionality of enterococci in meat products. Int J Food Microbiol 88:223–233

    Article  CAS  PubMed  Google Scholar 

  • Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BS, Seo JG, Lee GS, Kim JH, Han YW, Kan H, Kim HO, Rhee JH, Chung MJ, Park YM (2009) Antimicrobial activity of enterocins from Enterococcus feacalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol 47:101–109. doi:10.1007/s12275-008-0179-y

    Article  CAS  PubMed  Google Scholar 

  • Klare I, Heier H, Claus H, Reissbrodt R, Witte W (1995) VanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett 125:165–172

    Article  CAS  PubMed  Google Scholar 

  • Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131

    Article  PubMed  Google Scholar 

  • Leroi F, Foulquié-Moreno MR, De Vuyst L (2003) Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a coculture in food fermentation. Int J Food Microbiol 88:235–240

    Article  Google Scholar 

  • Liu G, Griffiths MW, Wu P, Wang H, Zhang X, Li P (2011) Enterococcus faecium LM-2, a multi-bacteriocinogenic strain naturally occurring in ‘Byaslag’, a traditional cheese of Inner Mongolia in China. Food Control 22:283–289

    Article  CAS  Google Scholar 

  • Macé S, Cardinal M, Jaffrès E, Cornet J, Lalanne V, Chevalier F, Sérot T, Pilet MF, Dousset X, Joffraud JJ (2014) Evaluation of the spoilage potential of bacteria isolated from spoiled cooked whole tropical shrimp (Penaeus vannamei) stored under modified atmosphere packaging. Food Control 40:9–17

    Google Scholar 

  • McBride SM, Fischetti VA, Le Blanc DJ, Moellering RC, Gilmore MS (2007) Genetic diversity among Enterococcus faecalis. PLoS ONE 7:1–22

    Google Scholar 

  • McCabe KM, Zhan YH, Khan G, Mason EO, MaCabe ERB (1995) Amplification of bacterial DNA using highly conserved sequences: automated analysis and potential for molecular triage of sepsis. Pediatr 95:165–169

    CAS  Google Scholar 

  • Migaw S, Ghrairi T, Le Chevalier P, Brillet B, Fleury Y, Hani K (2013) Isolation and characterization of Enterococci bacteriocinic strains from Tunisian fish viscera. Food Nutr Sci 4:701–708

    Article  Google Scholar 

  • Morandi S, Cremonesi P, Povolo M, Brasca M (2012) Enterococcus lactis sp. nov., from Italian raw milk cheeses. Int J Syst Evol Microbiol 62:1992–1996

    Article  CAS  PubMed  Google Scholar 

  • Morandi S, Silvetti T, Brasca M (2013) Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin. Antonie Van Leeuwenhoek 103:239–249

    Article  CAS  PubMed  Google Scholar 

  • Morandi S, Silvetti T, Miranda Lopez JM, Brasca M (2015) Antimicrobial activity, antibiotic resistance and the safety of lactic acid bacteria in raw milk Valtellina Casera cheese. J Food Saf 35:193–205

    Article  CAS  Google Scholar 

  • Morrison D, Woodford N, Cookson B (1997) Enterococci as emerging pathogens of humans. Soc Appl Bacteriol Symp Ser 26:89S–99S

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Atienza E, Landeta G, las Rivas BD, Gómez-Sala B, Muñoz R, Hernández E, Pablo M, Cintas L, Herranz C (2011) Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int J Food Microbiol 146:212–216

    Article  PubMed  Google Scholar 

  • Nair PS, Surendran PK (2005) Biochemical characterization of lactic acid bacteria isolated from fish and prawn. J Cult Collect 4:48–52

    Google Scholar 

  • Naser MS, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyl M, Swings J (2005) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiol 151:2141–2150

    Article  CAS  Google Scholar 

  • Noordiana N, Fatimah A, Mun AS (2013) Antibacterial agents produced by lactic acid bacteria isolated from Threadfin Salmon and Grass shrimps. Int Food Res J. 20:117–124

    Google Scholar 

  • Russell JB, Mantovani HC (2002) The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J Mol Microbiol Biotechnol 4:347–350

    CAS  PubMed  Google Scholar 

  • Sánchez-Ortiz AC, Luna-González A, Campa-Córdova AI, Escamilla-Montes R, Flores-Miranda MDC, Mazón-Suástegui JM (2015) Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat Am J Aquat Res 43:123–136

    Article  Google Scholar 

  • Schleifer KH, Klipper-Balz R, Devriese LA (1984) Staphylococcus arlettae sp. nov., S. equorum sp. nov., S. kloosii sp. nov.: three coagulase-negative novobiocin-resistant species from animals. Syst Appl Microbiol 5:501–509

    Article  Google Scholar 

  • Son R, Nimita F, Rusul G, Nasreldin E, Samuel L, Nishibuchi M (1999) Isolation and molecular characterization of vancomycin-resistant Enterococcus faecium in Malaysia. Lett Appl Microbiol 29:118–122

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Svetoch EA, Eruslanov BV, Levchulk VP, Mitsevich EV, Mitsevich IP, Kovalevlu N, Fursova NK, Teimurazov MG, Stepanshinlu G, Volodina LI, Diatlov IA (2011) Antimicrobial activity of bacteriocin S760 produced by Enterococcus faecium strain LWP760. Antibiot Khimioter 56:3–9

    CAS  PubMed  Google Scholar 

  • Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thumu SCRT, Halami PM (2012) Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek 102:541–551. doi:10.1007/s10482-012-9749-4

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Holzapfel WH (2015) Traditional cereal fermented foods as sources of functional microorganisms. In: Holzapfel WH (ed) Advances in Fermented Foods and Beverages, 1st edn. Woodhead Publishing, Cambridge, pp 123–153

    Chapter  Google Scholar 

  • Todorov SD, von Mollendorff JW, Moelich S, Muleer N, Witthuhn RC, Dicks LMT (2009) Evaluation of potential probiotic properties of Enterococcus mundtii, its survival in Boza and in situ bacteriocin production. Food Technol Biotechnol 47:178–191

    CAS  Google Scholar 

  • Valenzuela AS, Ben Omar N, Abriouel H, Cañamero MM, Gálvez A (2010) Isolation and identification of Enterococcus faecium from seafoods: antimicrobial resistance and production of bacteriocin-like substances. Food Microbiol 27:955–961

    Article  CAS  PubMed  Google Scholar 

  • Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Ministry of High Education, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taoufik Ghrairi.

Ethics declarations

Conflict of interest

All authors of this manuscript have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Braïek, O., Ghomrassi, H., Cremonesi, P. et al. Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie van Leeuwenhoek 110, 771–786 (2017). https://doi.org/10.1007/s10482-017-0847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0847-1

Keywords

Navigation