Skip to main content
Log in

Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The present work aimed to evaluate 16S rRNA, khe and rpoB gene sequencing for the identification of Klebsiella pneumoniae in comparison with phenotypic methods. Fifteen clinical isolates were examined, which were initially identified as K. pneumoniae subsp. pneumoniae using the automated VITEK 32 system in two hospitals in Enshi City, China. Their identity was further supported by conventional phenotypic methods on the basis of morphological and biochemical characteristics. Using Bayesian phylogenetic analyses and haplotypes network reconstruction, 13 isolates were identified as K. pneumoniae, whereas the other two isolates (K19, K24) were classified as Shigella sp. and Enterobacter sp., respectively. Of the three genes, 16S rRNA and khe gene could discriminate the clinical isolates at the genus level, whereas rpoB could discriminate Klebsiella at the species and even subspecies level. Overall, the gene tree based on rpoB is more compatible with the currently accepted classification of Klebsiella than those based on 16S rRNA and khe genes, showing that rpoB can be a powerful tool for identification of K. pneumoniae isolates. Above all, our study challenges the utility of khe as a species-specific marker for identification of K. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adékambi T, Drancourt M, Raoult D (2009) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17:37–45

    Article  PubMed  Google Scholar 

  • Albuquerque P, Mendes MV, Santos CL (2009) DNA signature-based approaches for bacterial detection and identification. Sci Total Environ 407:3641–3651

    Article  CAS  PubMed  Google Scholar 

  • Baraniak A, Izdebski R, Fiett J et al (2016) NDM-producing Enterobacteriaceae in Poland, 2012–14: inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J Antimicrob Chemother 71:85–91

    Article  CAS  PubMed  Google Scholar 

  • Borer A, Saidel-Odes L, Riesenberg K et al (2009) Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol 30:972–976

    Article  PubMed  Google Scholar 

  • Boye K, Hansen DS (2003) Sequencing of 16S rDNA of Klebsiella: taxonomic relations within the genus and to other Enterobacteriaceae. Int J Med Microbiol 292:495–503

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Duijkeren E (2005) Identification and antimicrobial susceptibility of 100 Klebsiella animal clinical isolates. Vet Microbiol 105:307–312

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Verhoef J (2001) Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, van Himbergen T, Kusters K, Verhoef J (2004) Development of a rapid identification method for Klebsiella pneumoniae phylogenetic groups and analysis of 420 clinical isolates. Clin Microbiol Infect 10:942–945

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Passet V, Grimont PA (2014) Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int J Syst Evol Microbiol 64:3146–3152

    Article  PubMed  Google Scholar 

  • Carter JS, Bowden FJ, Bastian I (1999) Phylogenetic evidence for reclassification of Calymmatobacterium granulomatis as Klebsiella granulomatis comb. nov. Int J Syst Bacteriol 49:1695–1700

    Article  PubMed  Google Scholar 

  • Chen Z, Liu M, Cui Y et al (2014) A novel PCR-based genotyping scheme for clinical Klebsiella pneumoniae. Future Microbiol 9:21–32

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Su JH, Lin CN (2002) Cloning of a gene encoding a unique hemolysin from Klebsiella pneumoniae and its potential use as a species-specific gene probe. Microb Pathog 33:1–6

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Diancourt L, Passet V, Verhoef J et al (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drancourt M, Bollet C, Carta A (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov., Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM (1998) Sequence analysis of the cupin gene family in Synechocystis PCC6803. Microb Comp Genomics 3:141–148

    Article  CAS  PubMed  Google Scholar 

  • Escobar Pérez JA, Olarte Escobar NM, Castro-Cardozo B et al (2013) Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother 57:1957–1960

    Article  PubMed  PubMed Central  Google Scholar 

  • Fevre C, Passet V, Deletoile A et al (2011) PCR-based identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the agent of rhinoscleroma. PLoS Negl Trop Dis 5:e1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana C, Favaro M, Pelliccioni M (2005) Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol 43:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garrote F, Cercenado E, Bouza E (2000) Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. J Clin Microbiol 38:2108–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Hansen DS, Aucken HM, Abiola T et al (2004) Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42:3665–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris KA, Hartley JC (2003) Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J Med Microbiol 52:685–691

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto JG, Stevenson BS, Schmidt TM (2003) Rates and consequences of recombination between rRNA operons. J Bacteriol 185:966–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkey PM (2006) Identification of Enterobacteriaceae. In: Gillespie SH, Hawkey PM (eds) Principles and Practice of Clinical Bacteriology, 2nd edn. Wiley & Sons, England, pp 341–345

    Chapter  Google Scholar 

  • He JY, Qu JF, Liu MY et al (2012) Polymerase chain reaction analysis for detecting highly virulent serotypes of Klebsiella pneumoniae. Letters in Biotechnology 23:554–557 (in Chinese)

    CAS  Google Scholar 

  • Jerassy Z, Yinnon AM, Mazouz-Cohen S et al (2006) Prospective hospital-wide studies of 505 patients with nosocomial bacteraemia in 1997 and 2002. J Hosp Infect 62:230–236

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas D, Spitzmüller B, Daschner FD (2004) Discrimination of Klebsiella pneumoniae and Klebsiella oxytoca phylogenetic groups and other Klebsiella species by use of amplified fragment length polymorphism. Res Microbiol 155:17–23

    Article  CAS  PubMed  Google Scholar 

  • Kovtunovych G, Lytvynenko T, Negrutska V (2003) Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene. Res Microbiol 154:587–592

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sun P, Vamathevan J et al (2011) Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother 55:4267–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DJ (1991) 16S and 23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. John Wiley & Sons, Chichester, pp 115–175

    Google Scholar 

  • Martínez J, Martínez L, Rosenblueth M (2004) How are gene sequence analyses modifying bacterial taxonomy? The case of Klebsiella. Int Microbiol 7:261–268

    PubMed  Google Scholar 

  • Martínez-Murcia AJ, Antón AI, Rodríguez-Valera F (1999) Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. Int J Syst Bacteriol 49:601–610

    Article  PubMed  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212:403–411

    Article  CAS  PubMed  Google Scholar 

  • Pena C, Pujol M, Ardanuy C et al (2001) An outbreak of hospital-acquired Klebsiella pneumoniae bacteraemia, including strains producing extended-spectrum beta-lactamase. J Hosp Infect 47:53–59

    Article  CAS  PubMed  Google Scholar 

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Podschun R, Pietsch S, Höller C, Ullmann U (2001) Incidence of Klebsiella species in surface waters and their expression of virulence factors. Appl Environ Microbiol 67:3325–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D, Crandall KA (1998) MODLTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martínez L, Silva J (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda K, Seki T, Kudo T (1999) Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol 181:78–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver TM, Smith JA, Hocking JM (2009) Structural and functional studies of truncated hemolysin A from Proteus mirabilis. J Biol Chem 284:22297–22309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31572240, 81171607, and J1103604), and the fund of collaboration between Sichuan University and Luzhou City (2013CDLZ-S16). Xianguang Guo was supported by the National Natural Science Foundation of China (31272281).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dali Chen or Jianping Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Guo, X., Xiang, S. et al. Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae . Antonie van Leeuwenhoek 109, 1029–1040 (2016). https://doi.org/10.1007/s10482-016-0702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0702-9

Keywords

Navigation