Skip to main content
Log in

Paenibacillus wenxiniae sp. nov., a nifH gene -harbouring endophytic bacterium isolated from maize

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel Gram-positive, aerobic, motile, endospore-forming, rod-shaped bacterium, designated 373T was isolated from surface-sterilised root tissue of a maize planted in Fangshan District of Beijing, Peopole’s Republic of China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belongs to the genus Paenibacillus. The highest 16S rRNA gene sequence similarity was found between strain 373T and Paenibacillus hunanensis (98.1 %), meanwhile the 16S rRNA gene sequence similarity between strain 373T and the type strains of other recognised members of the genus Paenibacillus were all below 95.6 %. However, the DNA–DNA hybridization values between strain 373T and the type strain P. hunanensis DSM 22170T was 30.2 %. The DNA G+C content of strain 373T was determined to be 46.0 mol%. The predominant respiratory quinone was identified as menaquinone-7 and the polar lipid profile was found to be composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were found to consist of anteiso-C15: 0 (59.6 %), anteiso-C17: 0 (12.8 %) and C16: 0 (6.7 %). The results of physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 373T from the closely related species in this genus Paenibacillus. Strain 373T is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus wenxiniae sp. nov. is proposed, with the type strain 373T (= CGMCC 1.15007 T = DSM100576 ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (ash, farrow, wallbanks and collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  • Baik KS, Lim CH, Choe HN, Kim EM, Seong CN (2011) Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 61:529–534

    Article  CAS  PubMed  Google Scholar 

  • Benardini JN, Vaishampayan PA, Schwendner P, Swanner E, Fukui Y, Osman S, Satomi M, Venkateswaran K (2011) Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. Int J Syst Evol Microbiol 61:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM, Tejedor C, Peix A (2013) Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 63:4433–4444

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Flores-Félix JD, Ramírez-Bahena MH, García-Fraile P, Martínez-Hidalgo P, Igual JM, Tejedor C, Peix A, Velázquez E (2014) Paenibacillus lupini sp. nov. isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 64:3028–3033

    Article  CAS  PubMed  Google Scholar 

  • Collins M, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptido- glycans based on 2,4-diaminobutyric acid. J Appl Microbiol 48:459–470

    CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    PubMed Central  PubMed  Google Scholar 

  • De Vos P, Ludwig W, Schleifer K-H, Whitman WB (2010) Paenibacillaceae fam. nov. In list of new names and new combinations previously effectively, but not validly, published, validation list no. 132. Int J Syst Evol Microbiol 60:469–472

    Article  Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  • Glaeser SP, Falsen E, Busse HJ, Kämpfer P (2013) Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 63:777–782

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hegazi NA, Hamza AM, Osman A, Ali S, Sedik MZ, Fayez M (1998) Modified combined carbon N-deficient medium for isolation, enumeration and biomass production of diazotrophs. In: Kauser Malik A, Sajjad Mirza M (eds) Nitrogen fixation with nonlegumes. Kluwer Academic Publishers, Dordrecht, pp 247–253

    Chapter  Google Scholar 

  • Hu XF, Li SX, Wu JG, Wang JF, Fang QL, Chen JS (2010) Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int J Syst Evol Microbiol 60:8–14

    Article  CAS  PubMed  Google Scholar 

  • Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H et al (2012) Introducing EzTaxonETe: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kishore KH, Begum Z, Pathan AAK, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Kong BH, Liu QF, Liu M, Liu Y, Liu L, Li CL, Yu R, Li YH (2013) Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 63:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackerandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Willey, Chichester, pp 115–175

    Google Scholar 

  • Lee J, Shin NR, Jung MJ, Roh SW, Kim MS, Lee JS, Lee KC, Kim YO, Bae JW (2013) Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 63:428–434

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lu Q, Liu T, Zhou S, Yang G, Zhao Y (2014) Paenibacillus guangzhouensis sp. nov., an Fe(III)-and humus-reducing bacterium from a forest soil. Int J Syst Evol Microbiol 64:3891–3896

    Article  PubMed  Google Scholar 

  • Liu Y, Liu L, Qiu F, Schumann P, Shi Y, Zou Y, Zhang X, Song W (2010) Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60(6):1266–1270

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121

    Article  CAS  PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of DNA from microorganism. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of base composition of deoxyribonucleic acid from its denaturation temperature. J Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbour, Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Montes MJ, Mercade’ E, Bozal N, Guinea J (2004) Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the antarctic environment. Int J Syst Evol Microbiol 54:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Moon JC, Jung YJ, Jung JH, Jung HS, Cheong YR, Jeon CO, Lee KO, Lee SY (2011) Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61:2753–2757

    Article  CAS  PubMed  Google Scholar 

  • Oh HW, Kim BC, Lee KH, Kim Y, Park DS, Park HM, Bae KS (2008) Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis. J Microbiol 46:530–534

    Article  CAS  PubMed  Google Scholar 

  • Park MH, Traiwan J, Jung MY, Nam YS, Jeong JH, Kim W (2011) Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. Int J Syst Evol Microbiol 61:281–285

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Mateos PF, Martı’nez-Molina E, Velázquez E (2005) Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55P:405–408

    Article  Google Scholar 

  • Rzhetsky A, Nei M (1992) Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35:367–375

    Article  CAS  PubMed  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol l 4:406–425

    CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang QY, Yang N, Wang J, Xie YQ, Ren B, Zhou YG, Gu MY, Mao J, Li WJ et al (2011) Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 61:2167–2172

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traiwan J, Park MH, Kim W (2011) Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. Int J Syst Evol Microbiol 61:670–673

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Fterich A, Mahdhi M, Ramı’rez-Bahena M-H, Caviedes MA, Mars M, Vela’zquez E, Rodriguez-Llorente ID (2010) Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. Int J Syst Evol Microbiol 60:2182–2186

    Article  CAS  PubMed  Google Scholar 

  • Velázquez E, de Miguel T, Poza M, Rivas R, Rossello´ -Mora R, Villa TG (2004) Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64

    Article  PubMed  Google Scholar 

  • Wang L, Baek S-H, Cui Y, Lee H-G, Lee S-T (2012) Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 62:1284–1288

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology: report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Yoon JH, Kang SJ, Yeo SH, Oh TK (2005) Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55:2339–2344

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang ZT, Yu HM, Ma YC (2013) Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 63:1776–1781

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Gao S, Wei DQ, Yang LL, Huang X, He J, Zhang YJ, Tang SK, Li WJ (2012) Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie van Leeuwenhoek 102:601–609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by “Special Fund for Agro-scientific Research in the Public Interest” (201203045) and National Natural Science Foundation of China (No. 31570008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-guang Sun.

Additional information

Jun-lian Gao and Fan-yang Lv have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Jl., Lv, Fy., Wang, Xm. et al. Paenibacillus wenxiniae sp. nov., a nifH gene -harbouring endophytic bacterium isolated from maize. Antonie van Leeuwenhoek 108, 1015–1022 (2015). https://doi.org/10.1007/s10482-015-0554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0554-8

Keywords

Navigation