Skip to main content
Log in

Heterologous expression of galbonolide biosynthetic genes in Streptomyces coelicolor

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The galbonolide antibiotics are non-glycosylated heptaketide 14-membered macrolides. These antibiotics exhibit broad-spectrum fungicidal activities, including against the human pathogen Cryptococcus neoformans. Previously, galbonolides B and E were isolated from the marine actinomycete Streptomyces sp. LZ35. By bioinformatics analysis, the putative galbonolide biosynthetic gene cluster, gbn, was identified in the genome of strain LZ35. In order to verify that the core genes (gbnA–E) are sufficient for synthesizing the basic structure of galbonolide as previously proposed, we performed the heterologous expression of gbnA–E in a “clean background” host Streptomyces coelicolor ZM12, in which all the native polyketide synthase genes have been deleted. As expected, the production of galbonolide B (1) was detected in the transformant. To the best of our knowledge, this is the first report that demonstrates the essential role of gbnA–E in the biosynthesis of galbonolides by heterologous expression. This heterologous expression system would be helpful to generate novel galbonolide derivatives by co-overexpression of unusual biosynthesis extender units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Achenbach H, Muhlenfeld A, Fauth U, Zahner H (1988) The galbonolides. Novel, powerful antifungal macrolides from Streptomyces galbus ssp. eurythermus. Ann NY Acad Sci 544:128–140

    Article  CAS  PubMed  Google Scholar 

  • Bao WL, Sheldon PJ, Hutchinson CR (1999) Purification and properties of the Streptomyces peucetius DpsC β-ketoacyl:acyl carrier protein synthase III that specifies the propionate-starter unit for type II polyketide biosynthesis. Biochemistry 38:9752–9757

    Article  CAS  PubMed  Google Scholar 

  • Cheng YQ, Tang GL, Shen B (2003) Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci USA 100:3149–3154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Combes P, Till R, Bee S, Smith MCM (2002) The Streptomyces genome contains multiple pseudo-attB sites for the φC31-encoded site-specific recombination system. J Bacteriol 184:5746–5752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eshelby J, Goessman M, Parsons PJ, Pennicotta L, Highton A (2005) Model studies for the synthesis of galbonolide B. Org Biomol Chem 3:2994–2997

    Article  CAS  PubMed  Google Scholar 

  • Fauth U, Zahner H, Muhlenfeld A, Achenbach H (1986) Galbonolides A and B—two non-glycosidic antifungal macrolides. J Antibiot 39:1760–1764

    Article  CAS  PubMed  Google Scholar 

  • Ferraro DJ, Gakhar L, Ramaswamy S (2005) Rieske business: structure–function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175–190

    Article  CAS  PubMed  Google Scholar 

  • Goranovic D, Kosec G, Mrak P, Fujs S, Horvat J, Kuscer E, Kopitar G, Petkovic H (2010) Origin of the allyl group in FK506 biosynthesis. J Biol Chem 285:14292–14300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta M, Till R, Smith MCM (2007) Sequences in attB that affect the ability of φC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res 35:3407–3419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris GH, Shafiee A, Cabello MA, Curotto JE, Genilloud O, Goklen KE, Kurtz MB, Rosenbach M, Salmon PM, Thornton RA et al (1998) Inhibition of fungal sphingolipid biosynthesis by rustmicin, galbonolide B and their new 21-hydroxy analogs. J Antibiot 51:837–844

    Article  CAS  PubMed  Google Scholar 

  • Karki S, Kwon SY, Yoo HG, Suh JW, Park SH, Kwon HJ (2010) The methoxymalonyl-acyl carrier protein biosynthesis locus and the nearby gene with the β-ketoacyl synthase domain are involved in the biosynthesis of galbonolides in Streptomyces galbus, but these loci are separate from the modular polyketide synthase gene cluster. FEMS Microbiol Lett 310:69–75

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Karki S, Kwon SY, Park SH, Nahm BH, Kim YK, Kwon HJ (2014) A single module type I polyketide synthase directs de novo macrolactone biogenesis during galbonolide biosynthesis in Streptomyces galbus. J Biol Chem 289:34557–34568

    Article  PubMed  Google Scholar 

  • Li Y, Chen H, Ding Y, Xie Y, Wang H, Cerny RL, Shen Y, Du L (2014) Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF. Angew Chem Int Ed 53:7524–7530

    Article  CAS  Google Scholar 

  • Liu C, Zhu J, Li Y, Zhang J, Lu C, Wang H, Shen Y (2015) In vitro reconstitution of a PKS pathway for the biosynthesis of galbonolides in Streptomyces sp. LZ35. Chembiochem. doi:10.1002/cbic.201500017

    Google Scholar 

  • Mandala SM, Harris GH (2000) Isolation and characterization of novel inhibitors of sphingolipid synthesis: australifungin, viridiofungins, rustmicin, and khafrefungin. Method Enzymol 311:335–348

    Article  CAS  Google Scholar 

  • Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG, Harris G, Abruzzo GK, Flattery AM, Gill CJ et al (1998) Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J Biol Chem 273:14942–14949

    Article  CAS  PubMed  Google Scholar 

  • Mccoy JG, Johnson HD, Singh S, Bingman CA, Lei IK, Thorson JS, Phillips GN (2009) Structural characterization of CalO2: a putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic pathway. Proteins 74:50–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reddick JJ, Antolak SA, Raner GM (2007) PksS from Bacillus subtilis is a cytochrome P450 involved in bacillaene metabolism. Biochem Biophys Res Commun 358:363–367

    Article  CAS  PubMed  Google Scholar 

  • Sakoh H, Sugimoto Y, Imamura H, Sakuraba S, Jona H, Bamba-Nagano R, Yamada K, Hashizume T, Morishima H (2004) Novel galbonolide derivatives as IPC synthase inhibitors: design, synthesis and in vitro antifungal activities. Bioorg Med Chem Lett 14:143–145

    Article  CAS  PubMed  Google Scholar 

  • Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    Article  CAS  PubMed  Google Scholar 

  • Sigmund JM, Hirsch CF (1998) Fermentation studies of rustmicin production by a Micromonospora sp. J Antibiot 51:829–836

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Thomas EJ (1998) Approaches to a synthesis of galbonolide B. J Chem Soc Perkin Trans 1:3541–3556

    Article  Google Scholar 

  • Tse B, Blazey CM, Tu B, Balkovec J (1997) Determination of the absolute stereochemistry of (−)-galbonolide A. J Org Chem 62:3236–3241

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Chen YY, Ge L, Fang TT, Meng J, Liu Z, Fang XY, Ni S, Lin C, Wu YY et al (2013) PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes. J Appl Microbiol 115:77–85

    Article  CAS  PubMed  Google Scholar 

  • Wilson MC, Gulder TAM, Mahmud T, Moore BS (2010) Shared biosynthesis of the saliniketals and rifamycins in Salinispora arenicola is controlled by the sare1259-encoded cytochrome P450. J Am Chem Soc 132:12757–12765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yepes A, Rico S, Rodríguez-García A, Santamaría RI, Díaz M (2011) Novel two-component systems implied in antibiotic production in Streptomyces coelicolor. PLoS ONE 6(5):e19980. doi:10.1371/journal.pone.0019980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou M, Jing XY, Xie PF, Chen WH, Wang T, Xia HY, Qin ZJ (2012) Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 333:169–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Zhongjun Qin at the Key Laboratory of Synthetic Biology of the Chinese Academy of Sciences for providing the strain Streptomyces coelicolor ZM12. This study was financially supported by the 973 programs (2012CB721005, 2010CB833802), the Fundamental Research Funds of Shandong University (2014JC027), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13028).

Conflict of interest

We declare that there is no financial/commercial conflicts of interest about all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuemao Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, J., Lu, C. et al. Heterologous expression of galbonolide biosynthetic genes in Streptomyces coelicolor . Antonie van Leeuwenhoek 107, 1359–1366 (2015). https://doi.org/10.1007/s10482-015-0415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0415-5

Keywords

Navigation