Skip to main content
Log in

Pre-treatment with antibiotics and Escherichia coli to equalize the gut microbiota in conventional mice

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The composition of the gut microbiota can vary widely between individual mice of the same batch and thereby affect the resulting outcome in experimental studies. Therefore, an efficient method is needed to equalize the gut microbiota prior to the start of critical experiments. In order to minimize variations in gut microbiota between animals and provide the animals with a Gram-negative flora exposing lipopolysaccharides in the cell-walls, C57BL/6 mice were given a mixture of ampicillin, metronidazole and clindamycin in the drinking water for 3 days and then Escherichia coli for two additional days. Treatment with antibiotics alone or with antibiotics in combination with E. coli was well tolerated by all animals. Body weight and liver weight were not affected, although higher hepatic fat content was found in treated animals (p < 0.05). The diversity of the gut microbiota was strongly reduced in animals treated with antibiotics and antibiotics in combination with E. coli (p < 0.01), without affecting the total amount of bacteria. Cloned and sequenced 16S rRNA genes showed high presence of Enterobacteriaceae and Porphymonadaceae in the treated animals. Analysis with Principal Component Analysis gave a clear separation of the composition in microbiota between different treatment groups. The described treatment efficiently equalized the gut microbiota and provided the animals with a strong abundance of Enterobacteriaceae without changing the total load of bacteria. This is a straightforward, lenient and efficient method of pre-treatment to equalize the gut microbiota of mice as a starting procedure of animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson KE et al (2013) Diverse effects of oats on cholesterol metabolism in C57BL/6 mice correlate with expression of hepatic bile acid-producing enzymes. Eur J Nutr 52:1755–1769

    Article  CAS  PubMed  Google Scholar 

  • Axling U et al (2012) Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab (Lond) 9:105

    Article  CAS  Google Scholar 

  • Bäckhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed Central  PubMed  Google Scholar 

  • Bech-Nielsen GV et al (2012) Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerance without affecting weight development and gut mucosal immunity. Res Vet Sci 92:501–508

    Article  CAS  PubMed  Google Scholar 

  • Bergheim I et al (2008) Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48:983–992

    Article  CAS  PubMed  Google Scholar 

  • Biagi E et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouhnik Y, Alain S, Attar A, Flourie B, Raskine L, Sanson-Le Pors MJ, Rambaud JC (1999) Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am J Gastroenterol 94:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Buffie CG et al (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80:62–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cani PD et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  CAS  PubMed  Google Scholar 

  • Carvalho BM et al (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55:2823–2834

    Article  CAS  PubMed  Google Scholar 

  • Castillo M, Martin-Orue SM, Manzanilla EG, Badiola I, Martin M, Gasa J (2006) Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet Microbiol 114:165–170

    Article  CAS  PubMed  Google Scholar 

  • Cho I et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fåk F, Ahrné S, Molin G, Jeppsson B, Weström B (2008) Microbial manipulation of the rat dam changes bacterial colonization and alters properties of the gut in her offspring. Am J Physiol Gastrointest Liver Physiol 294:G148–G154

    Article  PubMed  Google Scholar 

  • Fite A, Macfarlane GT, Cummings JH, Hopkins MJ, Kong SC, Furrie E, Macfarlane S (2004) Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction. Gut 53:523–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK (2010a) Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Lab Anim 44:283–289

    Article  CAS  PubMed  Google Scholar 

  • Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK (2010b) Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med 60:336–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5:e9836

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlsson CLJ et al (2011) Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age. Br J Nutr 106:887–895

    Article  CAS  PubMed  Google Scholar 

  • Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K (2012) The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 20:2257–2261

    Article  Google Scholar 

  • Larsen N et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    Article  PubMed Central  PubMed  Google Scholar 

  • Manichanh C et al (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20:1411–1419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70:7220–7228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Membrez M et al (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22:2416–2426

    Article  CAS  PubMed  Google Scholar 

  • Penders J et al (2007) Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56:661–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97:1166–1177

    Article  PubMed  Google Scholar 

  • Schmid-Bondztnski-Ratslaff (1989) Lipid determination in tissue according to SBR. Nordic Committee on Food Analysis, vol 131

  • Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. P. Håkansson’s Foundation (Eslöv, Sweden), the Royal Physiographic Society in Lund, and the Functional Food Science Centre at Lund University, Sweden are greatly acknowledged for financial support.

Conflict of interest

The authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Linninge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linninge, C., Ahrné, S. & Molin, G. Pre-treatment with antibiotics and Escherichia coli to equalize the gut microbiota in conventional mice. Antonie van Leeuwenhoek 107, 149–156 (2015). https://doi.org/10.1007/s10482-014-0312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0312-3

Keywords

Navigation