Skip to main content
Log in

Natronomonas gomsonensis sp. nov., isolated from a solar saltern

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A halophilic archaeal strain, SA3T, was isolated from sediment of a solar saltern in Gomso Bay, Republic of Korea. Cells of strain SA3T were observed to be coccoid-shaped, to lyse in distilled water, Gram stain-negative and to form red-pigmented colonies. Strain SA3T was found to require at least 18 % (w/v) NaCl for growth. Optimal growth was observed at 24 % (w/v) NaCl and 6 % (w/v) MgCl2. The optimum pH and temperature for growth were determined to be pH 7.0 and 40 °C, respectively, while the strain was found to grow within pH and temperature ranges of 5.5–8.0 and 20–45 °C, respectively. The polar lipids were determined to consist of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, unidentified phosphoglycolipids and unidentified phospholipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SA3T was most closely related to the members of the genus Natronomonas, Natronomonas moolapensis JCM 14361T (95.2 %) and Natronomonas pharaonis JCM 8858T (95.1 %). The genomic DNA G+C content (61.8 mol%) determined for strain SA3T was slightly lower than those of N. moolapensis JCM 14361T (63.4 mol%) and N. pharaonis JCM 8858T (64.3 mol%). DNA–DNA hybridization values between N. moolapensis JCM 14361T and N. pharaonis JCM 8858T and strain SA3T were <20 %. Based on phenotypic, chemotaxonomic and phylogenetic properties, we describe a new species of the genus Natronomonas, represented by strain SA3T (=JCM 17867T = KCTC 4088T), for which we propose the name Natronomonas gomsonensis sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52(2):485–491

    PubMed  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Minegishi H, Usami R, Kamekura M, Dyall-Smith ML (2010) Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol 60(5):1173–1176

    Article  PubMed  CAS  Google Scholar 

  • Cui HL, Lin ZY, Dong Y, Zhou PJ, Liu SJ (2007) Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57(10):2204–2206

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89(12):5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127

    Google Scholar 

  • Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70(4):484–485

    PubMed  CAS  Google Scholar 

  • Enache M, Itoh T, Fukushima T, Usami R, Dumitru L, Kamekura M (2007) Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB’ gene and protein sequences. Int J Syst Evol Microbiol 57:2289–2295

    Article  PubMed  CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15(10):1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  PubMed  CAS  Google Scholar 

  • Gibbons NE (1974) Family V. Halobacteriaceae fam. nov. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of meterminative macteriology. Williams & Wilkins, Baltimore, pp 269–273

    Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24(6):710–715

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez O, Oberwinkler T, Mansueto L, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D (2010) Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis. PLoS Comput Biol 6(6):e1000799

    Article  PubMed  Google Scholar 

  • Grant WD, Larsen H (1989) Group 111. Extremely halophilic archaeobacteria, Order Halobacteriales ord. nov. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 2216–2233

    Google Scholar 

  • Gutiérrez C, González C (1972) Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24(3):516

    PubMed  Google Scholar 

  • Gutiérrez M, Castillo A, Kamekura M, Ventosa A (2008) Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58(12):2880–2884

    Article  PubMed  Google Scholar 

  • Holding A, Collee J (1971) Routine biochemical tests. Methods Microbiol 6A:1–32

    Article  CAS  Google Scholar 

  • Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Evol Microbiol 47(3):853–857

    CAS  Google Scholar 

  • Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University, Cambridge

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • McDade JJ, Weaver RH (1959) Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77(1):60–64

    PubMed  CAS  Google Scholar 

  • Nei M, Kumar S, Takahashi K (1998) The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci USA 95:12390–12397

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271

    Article  PubMed  Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Evol Microbiol 47(1):233–238

    Google Scholar 

  • Oren A, Duker S, Ritter S (2006) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140

    Article  Google Scholar 

  • Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59:637–642

    Article  PubMed  Google Scholar 

  • Ovreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63(9):3367–3373

    PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Ross H, Grant W (1985) Nucleic acid studies on halophilic archaebacteria. J Gen Microbiol 131(1):165–173

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425

    CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology, vol 1325. American society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Soliman GSH, Trüper HG (1982) Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zbl Bakt Hyg I Abt Orig C 3 3(10):318–329

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580

    PubMed  CAS  Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8(1):89–99

    Article  Google Scholar 

  • Wayne R, Nash W, O’Brien S (1987) Chromosomal evolution of the Canidae. II. Divergence from the primitive carnivore karyotype. Cytogenet Cell Genet 44:134–141

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M, Nakase T (2000) Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang. China. Int J Syst Evol Microbiol 50:1297–1303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. NRF-2013R1A2A2A05006754), the Korea Polar Research Institute (PP12010) and the “Marine and Extreme Genome Research Center Program” of the Ministry of Ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Keun Rhee.

Additional information

Tae-Yoon Kim and So-Jeong Kim have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 936 kb)

Supplementary material 2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TY., Kim, SJ., Park, SJ. et al. Natronomonas gomsonensis sp. nov., isolated from a solar saltern. Antonie van Leeuwenhoek 104, 627–635 (2013). https://doi.org/10.1007/s10482-013-9970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9970-9

Keywords

Navigation