Skip to main content
Log in

Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

We compared the relative values of denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) for profiling fungal communities in wastewater treatment plants using both ITS and 18S rRNA gene fragments as phylogenetic markers. A similar number of fungal ribotypes was obtained with both methods for the same treatment plant when the ITS primer set was used, while a greater number of ribotypes was obtained with T-RFLP compared to DGGE with the 18S rRNA primer set. Non-metric multi-dimensional scaling of presence/absence data and analysis of similarity showed that both methods could distinguish between the different plant communities at a statistically significant level (p < 0.05), regardless of which phylogenetic marker was used. The data suggest that both methods can be used preferably together to profile activated sludge fungal communities. A comparison of profiles generated with both these phylogenetic markers based on the number of ribotypes/bands, suggests that the 18S rRNA region is more discriminatory than the ITS region. Detected differences in fungal community compositions between plants probably reflect differences in their influent compositions and operational parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6(8):769–779. doi:10.1111/j.1462-2920.2004.00675.x

    Article  CAS  PubMed  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5(1):36–47. doi:10.1046/j.1462-2920.2003.00383.x

    Article  CAS  PubMed  Google Scholar 

  • Avis PG, Dickie IA, Mueller GM (2006) A ‘dirty’ business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Mol Ecol 15(3):873–882. doi:10.1111/j.1365-294X.2005.02842.x

    Article  CAS  PubMed  Google Scholar 

  • Awad MF, Kraume M (2011) Keratinophilic fungi in activated sludge of wastewater treatment plants with MBR in Berlin, Germany. Mycology 2(4):276–282. doi:10.1080/21501203.2011.603103

    Google Scholar 

  • Bastias BA, Anderson IC, Xu Z, Cairney JWG (2007) RNA- and DNA-based profiling of soil fungal communities in a native Australian eucalypt forest and adjacent Pinus elliotti plantation. Soil Biol Biochem 39(12):3108–3114. doi:10.1016/j.soilbio.2007.06.022

    Article  CAS  Google Scholar 

  • Bidartondo MI, Gardes M (2005) Fungal diversity in molecular terms: profiling, identification and quantification in the environment. In: Dighton J, White JF, Oudemans P (eds) The Fungal Community: Its Organistation and Role in the Ecosystem, vol 23. Taylor and Francis, Boca Raton, pp 215–240

    Chapter  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349

    Article  Google Scholar 

  • Brodie E, Edwards S, Clipson N (2003) Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol Ecol 45(2):105–114. doi:10.1016/S0168-6496(03)00126-0

    Article  CAS  PubMed  Google Scholar 

  • Carrigg C, Rice O, Kavanagh S, Collins G, O’Flaherty V (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol 77(4):955–964. doi:10.1007/s00253-007-1219-y

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Cooke WB, Pipes WO (1969) The occurrence of fungi in activated sludge. Mycopathologia 40(3–4):249–270. doi:10.1007/BF02051779

    Google Scholar 

  • Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG (2010) Diversity of soil and rhizosphere fungi under Araucaria bidwillii (Bunya pine) at an Australian tropical montane rainforest site. Fungal Divers 40(1):12–22. doi:10.1007/s13225-009-0001-0

    Article  Google Scholar 

  • Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73(3):756–767. doi:10.1128/AEM.01170-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Lipthay JR, Enzinger C, Johnsen K, Aamand J, Sørensen SJ (2004) Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol Biochem 36(10):1607–1614. doi:10.1016/j.soilbio.2004.03.011

    Article  Google Scholar 

  • Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17(4):259–270. doi:10.1007/s00572-007-0129-2

    Article  CAS  PubMed  Google Scholar 

  • Diener UL, Morgan-Jones G, Hagler WM, Davis ND (1976) Mycoflora of activated sewage sludge. Mycopathologia 58(2):115–116. doi:10.1007/BF00707182

    Article  CAS  PubMed  Google Scholar 

  • Evans TN, Seviour RJ (2012) Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. Microb Ecol 63(4):773–786. doi:10.1007/s00248-011-9984-7

    Article  PubMed  Google Scholar 

  • Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75(16):5428–5433. doi:10.1128/AEM.00120-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74(19):6091–6101. doi:10.1128/AEM.01315-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao G, Yin D, Shengju C, Xia F, Yang J, Li Q, Wang W (2012) Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS ONE 7(2):e31806. doi:10.1371/journal.pone.0031806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491. doi:10.1128/AEM.66.12.5488-5491.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshino YT, Morimoto S (2010) Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE). Microbes Environ 25(4):281–287. doi:10.1264/jsme2.ME10136

    Article  Google Scholar 

  • Jeewon R, Hyde KD (2007) Detection and diversity of fungi from environmental samples: traditional versus molecular approaches. In: Varma A, Oelmüller R (eds) Soil biology, vol 11. Springer, Berlin. doi:10.1007/978-3-540-70865-0_1

  • Jumpponen A (2007) Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data. Microb Ecol 53(2):233–246. doi:10.1007/s00248-004-0006-x

    Article  CAS  PubMed  Google Scholar 

  • Kacprzak M, Neczaj E, Okoniewska E (2005) The comparative mycological analysis of wastewater and sewage sludges from selected wastewater treatment plants. Desalination 185(1–3):363–370. doi:10.1016/j.desal.2005.03.085

    Article  CAS  Google Scholar 

  • Kowalchuk G, Smit E. (2004) Fungal community analysis using PCR-denaturing gradient gel electrophoresis (DGGE). In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 2673–2690. doi:10.1007/978-1-4020-2177-0_314

  • Krauss G, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F (2011) Fungi in freshwater: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35(4):620–651. doi:10.1111/j.1574-6976.2011.00266.x

    Article  CAS  PubMed  Google Scholar 

  • Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lord NS, Kaplan CW, Shank P, Kitts CL, Elrod SL (2002) Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol 42(3):327–337. doi:10.1111/j.1574-6941.2002.tb01022.x

    Article  CAS  PubMed  Google Scholar 

  • Malandra L, Wolfaardt G, Zietsman A, Viljoen-Bloom M (2003) Microbiology of a biological contactor for winery wastewater treatment. Water Res 37(17):4125–4134. doi:10.1016/S0043-1354(03)00339-7

    Article  CAS  PubMed  Google Scholar 

  • May LA, Smiley B, Schmidt MG (2001) Comparative analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47(9):829–841. doi:10.1139/w01-086

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141. doi:10.1023/A:1000669317571

    Article  CAS  PubMed  Google Scholar 

  • Muzyer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    Google Scholar 

  • Muzyer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (2004) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 743–769. doi:10.1007/978-1-4020-2177-0_314

  • Nikolcheva LG, Bärlocher F (2005a) Seasonal and substrate preferences of fungi colonizing leaves in streams: tranditional versus molecular evidence. Environ Microbiol 7(2):270–280. doi:10.1111/j.1462-2920.2004.00709.x

    Article  CAS  PubMed  Google Scholar 

  • Nikolcheva LG, Bärlocher F (2005b) Molecular approaches to estimate fungal diversity. I. Terminal restriction fragment length polymorphism (T-RFLP). In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to Study litter decomposition: a practical guide. Springer, Dordrecht, pp 169–176. doi:10.1007/1-4020-3466-0_22

  • Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69(5):2548–2554. doi:10.1128/AEM.69.5.2548-2554.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okubo A, Sugiyama S (2009) Comparison of molecular fingerprinting methods for analysis of soil microbial community structure. Ecol Res 24(6):1399–1405. doi:10.1007/s11284-009-0602-9

    Article  Google Scholar 

  • Raviraja NS, Nikolcheva LG, Bärlocher F (2005) Diversity of conidia of aquatic hyphomycetes assessed by microscopy and by DGGE. Microb Ecol 49(2):301–307. doi:10.1007/s00248-004-0010-1

    Article  CAS  PubMed  Google Scholar 

  • Rees GN, Baldwin DS, Watson GO, Perryman S, Nielsen DL (2004) Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie Van Leeuwenhoek 86(4):339–347. doi:10.1007/s10482-004-0498-x

    Article  PubMed  Google Scholar 

  • Sait L, Galic M, Strugnell RA, Janssen PH (2003) Secretory antibodies do not affect the composition of the bacterial microbiota in the terminal ileum of 10-week old mice. Appl Environ Microbiol 69(4):2100–2109. doi:10.1128/AEM.69.4.2100-2109.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seviour RJ, McIlroy S (2008) The microbiology of phosphorus removal in activated sludge processes—the current state of play. J Microbiol 46(2):115–124. doi:10.1007/s12275-008-0051-0

    Article  CAS  PubMed  Google Scholar 

  • Seviour R, Nielson PH (2010) Microbial communities in activated sludge plants. In: Seviour R, Nielson PH (eds) Microbial ecology of activated sludge. IWA Publishing, London, pp 95–126

    Google Scholar 

  • Singh BK, Munro S, Reid E, Ord B, Potts JM, Paterson E, Millard P (2006) Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur J Soil Sci 57(1):72–82. doi:10.1111/j.1365-2389.2005.00781.x

    Article  CAS  Google Scholar 

  • Smit E, de Souza F, Landeweert R (2005) Molecular detection of fungal communities in soil. In: Osborn MA, Smith CT (eds) Molecular microbial ecology. Taylor and Francis, New York, pp 303–320

    Google Scholar 

  • Suter SG, Rees GN, Watson GO, Suter PJ, Silvester E (2011) Decomposition of native leaf litter by aquatic hyphomycetes in an alpine stream. Mar Freshw Res 62(7):841–849. doi:10.1071/MF10268

    Article  CAS  Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71(2):579–591. doi:10.2136/sssaj2006.0318

    Article  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104(8):927–936. doi:10.1017/S0953756200002471

    Article  CAS  Google Scholar 

  • Williams JC, de los Reyes III FL (2006) Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci Technol 54(1):139–146. doi:10.2166/wst.2006.381

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tegan N. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, T.N., Watson, G., Rees, G.N. et al. Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. Antonie van Leeuwenhoek 105, 559–569 (2014). https://doi.org/10.1007/s10482-013-0108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0108-x

Keywords

Navigation