Skip to main content
Log in

Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amouric A, Appia-Ayme C, Yarzabal A, Bonnefoy V (2009) Regulation of the iron and sulfur oxidation pathways in the acidophilic Acidithiobacillus ferrooxidans. Adv Mater Res 71–73:163–166

    Article  Google Scholar 

  • Appia-Ayme C, Quatrini R, Denis Y, Denizot F, Silver S, Roberto F, Veloso F, Valdes J, Cardenas JP, Esparza M, Orellana O, Jedlicki E, Bonnefoy V, Holmes DS (2006) Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy 83:273–280

    Article  CAS  Google Scholar 

  • Bouchal P, Zdrahal Z, Helanova S, Janiczek O, Hallberg KB, Mandl M (2006) Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry. Proteomics 6:4278–4285

    Article  PubMed  CAS  Google Scholar 

  • Bruscella P, Appia-Ayme C, Levican G, Ratouchniak J, Jedlicki E, Holmes DS, Bonnefoy V (2007) Differential expression of two bc 1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiol-SGM 153:102–110

    Article  CAS  Google Scholar 

  • Cabrejos ME, Zhao HL, Guacucano M, Bueno S, Levican G, Garcia E, Jedlicki E, Holmes DS (1999) IST1 insertional inactivation of the resB gene: implications for phenotypic switching in Thiobacillus ferrooxidans. FEMS Microbiol Lett 175:223–229

    Article  PubMed  CAS  Google Scholar 

  • Ceskova P, Mandl M, Hubackova J (2000) Kinetic quantitation of sulfur-oxidizing bacteria adsorbed on sulfur. Biotechnol Lett 22:699–701

    Article  CAS  Google Scholar 

  • Chi A, Valenzuela L, Beard S, Mackey AJ, Shabanowitz J, Hunt DF, Jerez CA (2007) Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans. Mol Cell Proteomics 6:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Felicio AP, de Oliveira E, Odena MA, Garcia O, Bertolini MC, Ferraz LFC, Ottoboni LMM, Novo MTM (2011) Differential proteomic analysis of Acidithiobacillus ferrooxidans cells maintained in contact with bornite or chalcopyrite: proteins involved with the early bacterial response. Process Biochem 46:770–776

    Article  CAS  Google Scholar 

  • Holmes DS, Zhao HL, Levican G, Ratouchniak J, Bonnefoy V, Varela P, Jedlicki E (2001) ISAfe1, an ISL3 family insertion sequence from Acidithiobacillus ferrooxidans ATCC 19859. J Bacteriol 183:4323–4329

    Article  PubMed  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB (2010) The biogeochemistry of biomining. In: Barton L, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht, pp 401–426

    Chapter  Google Scholar 

  • Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255

    Article  CAS  Google Scholar 

  • Kucera J, Bouchal P, Cerna H, Potesil D, Janiczek O, Zdrahal Z, Mandl M (2012) Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie Van Leeuwenhoek 101:561–573

    Article  PubMed  CAS  Google Scholar 

  • Kulpa CF Jr, Mjoli N, Roskey MT (1986) Comparison of iron and sulfur oxidation in Thiobacillus ferrooxidans: inhibition of iron oxidation by growth on sulfur. Biotechnol Bioeng Symp 16:289–295

    CAS  Google Scholar 

  • Landesman J, Duncan DW, Walden CC (1966) Oxidation of inorganic sulfur compounds by washed cell suspension of Thiobacillus ferrooxidans. Can J Microbiol 12:957–964

    Article  PubMed  CAS  Google Scholar 

  • Lefimil C, Osorio H, Quatrini R, Holmes D, Jedlicki E (2009) Regulation of expression of the petI operon involved in iron oxidation in the biomining bacterium Acidithiobacillus ferrooxidans. Adv Mater Res 71–73:199–202

    Article  Google Scholar 

  • Levican G, Bruscella P, Guacunano M, Inostroza C, Bonnefoy V, Holmes DS, Jedlicki E (2002) Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol 184:1498–1501

    Article  PubMed  CAS  Google Scholar 

  • Mandl M, Novakova O (1993) An ultraviolet method for the determination of oxidation of iron sulphide minerals by bacteria. Biotechnol Tech 7:573–574

    Article  CAS  Google Scholar 

  • Mandl M, Vyskovsky M (1994) Kinetics of arsenic(III) oxidation by iron(III) catalysed by pyrite in the presence of Thiobacillus ferrooxidans. Biotechnol Lett 16:1199–1204

    Article  CAS  Google Scholar 

  • Moura I, Lino AR (1994) Low-spin sulfite reductases. Methods Enzymol 243:296–301

    Article  CAS  Google Scholar 

  • Oliver DJ, VanSlyke JK (1988) Sulfur-dependent inhibition of protein and RNA synthesis by iron-grown Thiobacillus ferrooxidans. Arch Biochem Biophys 263:369–377

    Article  PubMed  CAS  Google Scholar 

  • Pakostova E, Mandl M, Omesova Pokorna B, Diviskova E, Lojek A (2013) Cellular ATP changes in Acidithiobacillus ferrooxidans cultures oxidizing ferrous iron and elemental sulfur. Geomicrobiol J 30:1–7

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Planeta J, Karasek P, Vejrosta J (2003) Development of packed capillary columns using carbon dioxide slurries. J Sep Sci 26:525–530

    Article  CAS  Google Scholar 

  • Pokorna B, Mandl M, Borilova S, Ceskova P, Markova R, Janiczek O (2007) Kinetic constant variability in bacterial oxidation of elemental sulfur. Appl Environ Microbiol 37:3752–3754

    Article  Google Scholar 

  • Ponce JS, Moinier D, Byrne D, Amouric A, Bonnefoy V (2012) Acidithiobacillus ferrooxidans oxidizes ferrous iron before sulfur likely through transcriptional regulation by the global redox responding RegBA signal transducing system. Hydrometallurgy 127–128:187–194

    Article  Google Scholar 

  • Pott AS, Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiol-SGM 144:1881–1894

    Article  CAS  Google Scholar 

  • Quatrini R, Lefimil C, Holmes DS, Jedlicki E (2005) The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiol-SGM 151:2005–2015

    Article  CAS  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Ratouchniak J, Veloso F, Valdes J, Lefimil C, Silver S, Roberto F, Orellana O, Denizot F, Jedlicki E, Holmes DS, Bonnefoy V (2006) Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 83:263–272

    Article  CAS  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394

    Article  PubMed  Google Scholar 

  • Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds or metal sulfides. Appl Environ Microbiol 70:4491–4498

    Article  PubMed  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    PubMed  CAS  Google Scholar 

  • Silverman MP, Lungred DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J Bacteriol 77:642–647

    PubMed  CAS  Google Scholar 

  • Sugio T, Wada K, Mori M, Inagaki K, Tano T (1988) Synthesis of an iron-oxidizing system during growth of Thiobacillus ferrooxidans on sulfur-basal salts medium. Appl Environ Microbiol 54:150–152

    PubMed  CAS  Google Scholar 

  • Valdes J, Veloso F, Jedlicki E, Holmes DS (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4:51

    Article  PubMed  Google Scholar 

  • Vera M, Guiliani N, Jerez CA (2003) Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71:125–132

    Article  CAS  Google Scholar 

  • Vera M, Rohwerder T, Bellenberg S, Sand W, Denis Y, Bonnefoy V (2009) Characterization of biofilm formation by the bioleaching acidophilic bacterium Acidithiobacillus ferrooxidans by a microarray transcriptome analysis. Adv Mater Res 71–73:175–178

    Article  Google Scholar 

  • Yarzabal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317

    Article  PubMed  CAS  Google Scholar 

  • Yarzabal A, Dusquesne K, Bonnefoy V (2003) Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur- and in ferrous iron media. Hydrometallurgy 71:107–114

    Article  CAS  Google Scholar 

  • Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiol-SGM 150:2113–2123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 525/08/0697 from the Czech Science Foundation. The MS-based proteomic study (Z.Z. and D.P.) was supported by the project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund. P.B. was partly supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mandl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucera, J., Bouchal, P., Lochman, J. et al. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis. Antonie van Leeuwenhoek 103, 905–919 (2013). https://doi.org/10.1007/s10482-012-9872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9872-2

Keywords

Navigation