Skip to main content
Log in

Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP)

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The highly toxic oxyanion tellurite (TeO3 2−) enters the cells of the facultative photosynthetic bacterium Rhodobacter capsulatus through an acetate permease. Here we show that actP gene expression is down-regulated by fructose and this in turn determines a strong decrease of tellurite uptake and a parallel increase in the cells resistance to the toxic metalloid (from a minimal inhibitory concentration of 8 μM up to 400 μM tellurite under aerobic growth conditions). This demonstrates that there exists a direct connection between the level of tellurite uptake and the sensitivity of the cells to the oxyanion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Basnayake RST, Bius JH, Akpolat OM, Chasteen TG (2001) Production of dimethyl telluride and elemental tellurium by bacteria amended with tellurite or tellurate. Appl Organomet Chem 15:499–510

    Article  CAS  Google Scholar 

  • Borghese R, Wall JD (1992) A novel class of ammonium assimilation mutants of the photosynthetic bacterium Rhodobacter capsulatus. Arch Microbiol 157:266–361

    Article  Google Scholar 

  • Borghese R, Zannoni D (2010) Acetate permease (ActP) is responsible for tellurite (TeO3 2−) uptake and resistance in cells of the facultative phototroph Rhodobacter capsulatus. Appl Environ Microbiol 76:942–944

    Article  PubMed  CAS  Google Scholar 

  • Borghese R, Borsetti F, Foladori P, Ziglio G, Zannoni D (2004) Effects of the metalloid oxyanion tellurite (TeO3 2−) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Environ Microbiol 70:6595–6602

    Article  PubMed  CAS  Google Scholar 

  • Borghese R, Marchetti D, Zannoni D (2008) The highly toxic oxyanion tellurite (TeO3 2−) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system. Arch Microbiol 189:93–100

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Toninello A, Zannoni D (2003) Tellurite uptake by cells of the facoltative phototroph Rhodobacter capsulatus is a delta pH dependent process. FEBS Lett 554:315–318

    Article  PubMed  CAS  Google Scholar 

  • Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F, Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156:807–813

    Article  PubMed  CAS  Google Scholar 

  • Burra R (2009) Determination of selenium and tellurium oxyanion toxicity, detection of metalloid-containing headspace compounds, and quantification of metalloid oxyanions in bacterial culture media, Thesis. Sam Houston State University, Huntsville, p 130

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biot 51:730–750

    Article  CAS  Google Scholar 

  • Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, Sandoval JM, Castro ME, Elías AO, Vásquez CC (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PloS ONE 2:e211

    Article  PubMed  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115

    Article  PubMed  CAS  Google Scholar 

  • Tomás JM, Kay WW (1986) Tellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli. Antimicrob Agents Chemother 30:127–131

    PubMed  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1992) Use of diethyldithiocarbamate for quantitative determination of tellurite uptake by bacteria. Anal Biochem 204:292–295

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1995) Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can J Microbiol 41:92–98

    Article  PubMed  CAS  Google Scholar 

  • Turner MS, Tan YP, Giffard PM (2007) Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Appl Environ Microbiol 73:6144–61449

    Article  PubMed  CAS  Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Taguchi AKW (1995) Genetic manipulation of purple photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1029–1065

    Google Scholar 

  • Yarema MC, Curry SC (2005) Acute tellurium toxicity from ingestion of metal-oxidizing solutions. Pediatrics 116:319–321

    Article  Google Scholar 

  • Zannoni D (1995) Aerobic and anaerobic electron transport chains in anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 949–971

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministero Istruzione Università e Ricerca (PRIN 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Borghese.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21 kb)

Supplementary material 1 (PPT 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghese, R., Cicerano, S. & Zannoni, D. Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP). Antonie van Leeuwenhoek 100, 655–658 (2011). https://doi.org/10.1007/s10482-011-9619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9619-5

Keywords

Navigation