Skip to main content

Advertisement

Log in

Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacteria of the genus Vibrio are an important component of marine ecosystems worldwide. The genus harbors several human pathogens, for instance the species Vibrio parahaemolyticus, a main cause for foodborne gastroenteritis in Asia and the USA. Pathogenic V. parahaemolyticus strains emerged also in Europe, but little is known about the abundance, pathogenicity and ecology of V. parahaemolyticus especially in Northern European waters. This study focuses on V. parahaemolyticus and its close relative Vibrio alginolyticus in the North Sea (Helgoland Roads, Germany). Free-living, plankton-attached and shellfish-associated Vibrio spp. were quantified between May 2008 and January 2010. CFUs up to 4.3 × 103 N l−1 and MPNs up to 240 N g−1 were determined. Phylogenetic classification based on rpoB gene sequencing revealed V. alginolyticus as the dominant Vibrio species at Helgoland Roads, followed by V. parahaemolyticus. We investigated the intraspecific diversity of V. parahaemolyticus and V. alginolyticus using ERIC-PCR. The fingerprinting disclosed three distinct groups at Helgoland Roads, representing V. parahaemolyticus, V. alginolyticus and one group in between. The species V. parahaemolyticus occurred mainly in summer months. None of the strains carried the virulence-associated genes tdh or trh. We further analyzed the influence of nutrients, secchi depth, temperature, salinity, chlorophyll a and phytoplankton on the abundance of Vibrio spp. and the population structure of V. parahaemolyticus. Spearman Rank analysis revealed that particularly temperature correlated significantly with Vibrio spp. numbers. Based on multivariate statistical analyses we report that the V. parahaemolyticus population was structured by a complex combination of environmental parameters. To further investigate these influences is the key to understanding the dynamics of Vibrio spp. in temperate European waters, where this microbial group and especially the pathogenic species, are likely to gain in importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baffone W, Citterio B, Vittoria E, Casaroli A, Campana R, Falzano L, Donelli G (2003) Retention of virulence in viable but non-culturable Vibrio spp. Int J Food Microbiol 89:31–39

    Article  PubMed  CAS  Google Scholar 

  • Baker-Austin C, Stockley L, Rangdale R, Martinez-Urtaza J (2010) Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ Microbiol Rep 2:7–18

    Article  Google Scholar 

  • Bauer A, Rørvik L (2007) A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Lett Appl Microbiol 45:371–375

    Article  PubMed  CAS  Google Scholar 

  • Bauer A, Østensvik Ø, Florvåg M, Ørmen Ø, Rørvik LM (2006) Occurrence of Vibrio parahaemolyticus, V cholerae, and V. vulnificus in Norwegian Blue Mussels (Mytilus edulis). Appl Environ Microbiol 72:3058–3061

    Article  PubMed  CAS  Google Scholar 

  • Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213

    Article  Google Scholar 

  • Bisharat N, Cohen DI, Maiden MC, Crook DW, Peto T, Harding RM (2007) The evolution of genetic structure in the marine pathogen, Vibrio vulnificus. Infect Gen Evol 7:685–693

    Article  CAS  Google Scholar 

  • Blackwell K, Oliver J (2008) The ecology of Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus in North Carolina Estuaries. J Microbiol 46:146–153

    Article  PubMed  Google Scholar 

  • Caburlotto G, Gennari M, Ghidini V, Tafi M, Lleo MM (2009) Presence of T3SS2 and other virulence-related genes in tdh-negative Vibrio parahaemolyticus; environmental strains isolated from marine samples in the area of the Venetian Lagoon, Italy. FEMS Microbiol Ecol 70:506–514

    Article  PubMed  CAS  Google Scholar 

  • Caburlotto G, Haley BJ, Lleò MM, Huq A, Colwell RR (2010a) Serodiversity and ecological distribution of Vibrio parahaemolyticus in the Venetian Lagoon, Northeast Italy. Environ Microbiol Rep 2:151–157

    Article  CAS  Google Scholar 

  • Caburlotto G, Lleo MM, Hilton T, Huq A, Colwell RR, Kaper JB (2010b) Effect on human cells of environmental Vibrio parahaemolyticus strains carrying type III secretion system 2. Infect Immun 78:3280–3287

    Article  PubMed  CAS  Google Scholar 

  • Cavallo RA, Stabili L (2002) Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res 36:3719–3726

    Article  PubMed  CAS  Google Scholar 

  • Choi SY, Lee JH, Jeon YS et al (2010) Multilocus variable-number tandem repeat analysis of Vibrio cholerae O1 El Tor strains harbouring classical toxin B. J Med Microbiol 59:763–769

    Article  PubMed  CAS  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Coppola E, Giorgi F (2010) An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int J Climatol 30:11–32

    Google Scholar 

  • De Toni A, Touron-Bodilis A, Wallet F (2009) Impact of climate change on pathogenic aquatic microorganisms: some examples. Environ Risques Sante 8:311–321

    Google Scholar 

  • Defer D, Bourgougnon N, Fleury Y (2009) Screening for antibacterial and antiviral activities in three bivalve and two gastropod marine molluscs. Aquaculture 293:1–7

    Article  CAS  Google Scholar 

  • Deter J, Lozach S, Derrien A, Véron A, Chollet J, Hervio-Heath D (2010a) Chlorophyll a might structure a community of potentially pathogenic culturable Vibrionaceae Insights from a one-year study of water and mussels surveyed on the French Atlantic coast. Environ Microbiol Rep 2:185–191

    Article  CAS  Google Scholar 

  • Deter J, Solen L, Antoine V, Jaufrey C, Annick D, Dominique HH (2010b) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937

    Article  Google Scholar 

  • Di Pinto A, Terio V, Novello L, Tantillo G (2011) Comparison between thiosulphate-citrate-bile salt sucrose (TCBS) agar and CHROMagar Vibrio for isolating Vibrio parahaemolyticus. Food Control 22(1):124–127

    Article  Google Scholar 

  • Drake SL, De Paola A, Jaykus LA (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Safety 6:120–144

    Article  CAS  Google Scholar 

  • Dulvy NK, Rogers SI, Jennings S, Stelzenmuller V, Dye SR, Skjoldal HR (2008) Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J Appl Ecol 45:1029–1039

    Article  Google Scholar 

  • Eiler A, Johansson M, Bertilsson S (2006) Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl Environ Microbiol 72:6004–6011

    Article  PubMed  CAS  Google Scholar 

  • Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  PubMed  CAS  Google Scholar 

  • Ellingsen AB, Jorgensen H, Wagley S, Monshaugen M, Rorvik LM (2008) Genetic diversity among Norwegian Vibrio parahaemolyticus. J Appl Microbiol 105:2195–2202

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package). Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Feuerpfeil I, Szewzyk R, Hummel A (2002) Die mikrobiologischen Nachweisverfahren der neuen Trinkwasserverordnung (TrinkwV 2001). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 45:1006–1009

    Article  Google Scholar 

  • Giuliano L, De Domenico M, De Domenico E, Höfle MG, Yakimov MM (1999) Identification of culturable oligotrophic bacteria within naturally occurring bacterioplankton communities of the Ligurian Sea by 16S rRNA sequencing and probing. Microb Ecol 37:77–85

    Article  PubMed  CAS  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (eds) (1999) Methods of seawater analysis. Wiley-VCH, Weinheim

    Google Scholar 

  • Gugliandolo C, Irrera GP, Lentini V, Maugeri TL (2008) Pathogenic Vibrio, Aeromonas and Arcobacter spp. associated with copepods in the Straits of Messina (Italy). Mar Pollut Bull 56:600–606

    Article  PubMed  CAS  Google Scholar 

  • Hazen T, Kennedy K, Chen S, Yi S, Sobecky P (2009) Inactivation of mismatch repair increases the diversity of Vibrio parahaemolyticus. Environ Microbiol 11:1254–1266

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Iida T (1993) The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev Med Microbiol 4:106–113

    Google Scholar 

  • Honda T, Ni Y, Miwatani T (1989) Purification of a tdh-related hemolysin produced by a Kanagawa phenomenon-negative clinical isolate of Vibrio parahaemolyticus 06–K46. FEMS Microbiol Lett 57:241–246

    CAS  Google Scholar 

  • Honda T, Abad-Lapuebla M, Ni Y, Yamamoto K, Miwatani T (1991) Characterization of a new thermostable direct haemolysin produced by a Kanagawa-phenomenon-negative clinical isolate of Vibrio parahaemolyticus. J Gen Microbiol 137:253–259

    PubMed  CAS  Google Scholar 

  • Hsieh JL, Fries JS, Noble RT (2007) Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl 17:102–109

    Article  Google Scholar 

  • Hsieh JL, Fries JS, Noble RT (2008) Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environ Microbiol 10:57–64

    PubMed  Google Scholar 

  • Hubert F, van der Knaap W, Noël T, Roch P (1996) Cytotoxic and antibacterial properties of Mytilus galloprovincialis, Ostrea edulis and Crassostrea gigas (Bivalve Molluscs) hemolymph. Aquat Living Resour 9:115–124

    Article  Google Scholar 

  • Hulton C, Higgins C, Sharp P (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834

    Article  PubMed  CAS  Google Scholar 

  • Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T (2008) Comparative genomic analysis using microarray demonstrates a Strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 76:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Jark U, Kirschke C (2009) Qualitativer Nachweis von Vibrionen. Laves Institut für Fische und Fischereierzeugnisse, Cuxhaven

  • Ki J, Zhang R, Zhang W, Huang Y, Qian P (2009) Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine vibrio species. Microb Ecol 58:679–691

    Article  PubMed  CAS  Google Scholar 

  • Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37:1173–1177

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Enomoto S, Sakazaki R, Kuwahara S (1963) A new selective isolation medium for the Vibrio group; on a modified Nakanishis’s medium (TCBS agar medium). Nippon Saikingaku Zasshi 18:387–392

    PubMed  CAS  Google Scholar 

  • Lhafi SK, Kühne M (2007) Occurrence of Vibrio spp. in blue mussels (Mytilus edulis) from the German Wadden Sea. Int J Food Microbiol 116:297–300

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Kumagai K, Baba K, Mekalanos JJ, Nishibuchi M (1993) Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol 175:3844–3855

    PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Mahoney JC, Gerding MJ, Jones SH, Whistler CA (2010) Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl Environ Microbiol 76:7459–7465

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Urtaza J, Simental L, Velasco D et al (2005) Pandemic Vibrio parahaemolyticus O3:K6, Europe. Emerg Infect Dis 11:1319–1320

    PubMed  Google Scholar 

  • Martinez-Urtaza J, Lozano-Leon A, Varela-Pet J, Trinanes J, Pazos Y, Garcia-Martin O (2008) Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Appl Environ Microbiol 74:265–274

    Article  PubMed  CAS  Google Scholar 

  • Mills JN, Gage KL, Khan AS (2010) Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 118:1507–1514

    Article  PubMed  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Mourino-Perez RR, Worden AZ, Azam F (2003) Growth of Vibrio cholerae O1 in red tide waters off California. Appl Environ Microbiol 69:6923–6931

    Article  PubMed  CAS  Google Scholar 

  • Nishibuchi M, Kaper JB (1985) Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol 162:558–564

    PubMed  CAS  Google Scholar 

  • Nishibuchi M, Taniguchi T, Misawa T, Khaeomaneeiam V, Honda T, Miwatani T (1989) Cloning and nucleotide-sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of V. parahaemolyticus. Inf Immun 57:2691–2697

    CAS  Google Scholar 

  • Oberbeckmann S, Wichels A, Maier T, Kostrzewa M, Raffelberg S, Gerdts G (2011) A polyphasic approach for the differentiation of environmental Vibrio isolates from temperate waters. FEMS Microbiol Ecol 75:145–162

    Article  PubMed  CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridisation. In: Paul J (ed) Methods in microbiology: marine microbiology, vol 30. Academic Press Ltd, London

    Google Scholar 

  • Ravel J, Knight IT, Monahan CE, Hill RT, Colwell RR (1995) Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation? Microbiology 141:377–383

    Article  PubMed  Google Scholar 

  • Rawlings TK, Ruiz GM, Colwell RR (2007) Association of Vibrio cholerae O1 El Tor and O139 Bengal with the copepods Acartia tonsa and Eurytemora affinis. Appl Environ Microbiol 73:7926–7933

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Castro A, Ansede-Bermejo J, Blanco-Abad V, Varela-Pet J, Garcia-Martin O, Martinez-Urtaza J (2010) Prevalence and genetic diversity of pathogenic populations of Vibrio parahaemolyticus in coastal waters of Galicia, Spain. Environ Microbiol Rep 2:58–66

    Article  CAS  Google Scholar 

  • Sapp M, Wichels A, Wiltshire KH, Gerdts G (2007) Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol Ecol 59:622–637

    Article  PubMed  CAS  Google Scholar 

  • Schets F, van den Berg HHJL, Rutjes SA, de Roda Husman AM (2010) Pathogenic Vibrio species in Dutch shellfish destined for direct human consumption. J Food Prot 73:734–738

    PubMed  Google Scholar 

  • Sobrinho PdSC, Destro MT, Franco BDGM, Landgraf M (2010) Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of Sao Paulo state, Brazil. Appl Environ Microbiol 76:1290–1293

    Article  CAS  Google Scholar 

  • Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558

    Article  PubMed  Google Scholar 

  • Tada J, Ohashi T, Nishimura N et al (1992) Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol Cell Probes 6:477–487

    Article  PubMed  CAS  Google Scholar 

  • Tarr C, Patel J, Puhr N, Sowers E, Bopp C, Strockbine N (2007) Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol 45:134–140

    Article  PubMed  CAS  Google Scholar 

  • Terzi G, Gucukoglu A (2010) Effects of lactic acid and chitosan on the survival of V. parahaemolyticus in Mussel Samples. J Anim Vet Adv 9:990–994

    Article  Google Scholar 

  • Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a north Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110

    Article  PubMed  CAS  Google Scholar 

  • Turner JW, Good B, Cole D, Lipp EK (2009) Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J 3:1082–1092

    Article  PubMed  CAS  Google Scholar 

  • UK Health Protection Agency (2009) Guidelines for assessing the microbiological safety of ready-to-eat foods. Health Protection Agency, London

    Google Scholar 

  • U.S. Food Drug Administration (USFDA) (2011) Fish and fisheries products hazards and controls guidance. (Appendix 5—FDA & EPA safety levels in regulations and guidance). USFDA, Silver Spring. http://www.fda.gov/downloads/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/Seafood/FishandFisheriesProductsHazardsandControlsGuide/UCM252448.pdf

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Plankton-Methodik. Mitt Int Verein Theor Angew Limnol 9:1–38

    Google Scholar 

  • Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  • Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C, Consortium TV (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Environ Microbiol 58:808–818

    CAS  Google Scholar 

  • Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, The VibrioSea Consortium (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12:2007–2019

    Article  PubMed  CAS  Google Scholar 

  • Whitaker WB, Parent MA, Naughton LM, Richards GP, Blumerman SL, Boyd EF (2010) Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl Environ Microbiol 76:4720–4729

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: Phytoplankton response. Helgoland Mar Res 58:269–273

    Article  Google Scholar 

  • Wiltshire KH, Kraberg A, Bartsch I et al (2010) Helgoland roads, North Sea: 45 years of change. Estuaries Coasts 33:295–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD grant from the Alfred Wegener Institute for Polar and Marine Research. We would like to thank Kristine Carstens, Silvia Peters and Karl-Walter Klings for their valuable contribution to this study. We are also very grateful for the sampling support from the crew of the RV Aade from the Alfred Wegener Institute for Polar and Marine Research Helgoland. This work was part of the Helgoland Foodweb Project and the Helmholtz program “PACES”. Furthermore, we would like to thank one anonymous reviewer for the helpful comments to improve an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Oberbeckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberbeckmann, S., Wichels, A., Wiltshire, K.H. et al. Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle. Antonie van Leeuwenhoek 100, 291–307 (2011). https://doi.org/10.1007/s10482-011-9586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9586-x

Keywords

Navigation