Skip to main content
Log in

Standard YPD, even supplemented with extra nutrients, does not always compensate growth defects of Saccharomyces cerevisiae auxotrophic strains

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Conventional complex media are routinely used to grow auxotrophic strains under the assumption that they can compensate the latter’s nutritional deficiencies. We here demonstrate that this is not always true. This study compares the growth parameters of Saccharomyces cerevisiae (S288C) and its derived auxotrophic strains FY1679-14C and BY4741 in synthetic minimal medium (SD), standard YPD medium from two of the most commonly used suppliers, or modified YPD medium. Maximum specific growth rates of auxotrophic strains were slightly lower than the prototrophic case in all growth conditions tested. Also, the biomass production of auxotrophic strains in synthetic medium was slightly less than the prototrophic case. However in both of the two standard YPD media used, the biomass production of both auxotrophic strains was markedly lower than that of the prototrophic one. The extent of the differences depended on the medium used. Indeed in one of the two YPD media, the lower biomass production of auxotrophic strains was evident even at the diauxic shift. Uracil seems to be the main limiting growth factor for both auxotrophic strains growing in the two standard YPD medium tested. No YPD media or specific supplement was able to compensate for the effect of the auxotrophic mutations in the multiple auxotrophic marker strain BY4741. The fact that auxotrophic strains grew poorly on YPD when compared to their prototrophic counterpart indicates that standard YPD medium is not sufficient to overcome the effect of auxotrophic mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams A, Gottschling DE, Kaiser CA, Steam T (1998) Methods in Yeast genetics: a cold spring harbor laboratory course manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Baracat-Pereira M, Coelho J, Minussi R, Chaves-Alves V, Brandão R, Silva D (1999) Cyclic AMP and low molecular weight effector(s) present in yeast extract are involved in pectin lyase production by Penicillium griseoroseum cultured on sucrose. Appl Biochem Biotechnol 76(2):129–141

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, Davis R (1982) Principles and practice of recombinant DNA research with yeast. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae. Metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 607–636

    Google Scholar 

  • Brachmann CB, Davies AJ, Cost G, Caputo E, Li J, Hieter PD, Boeke J (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115–132

    Article  CAS  PubMed  Google Scholar 

  • Çakar ZP, Sauer U, Bailey JE (1999) Metabolic engineering of yeast: the perils of auxotrophic hosts. Biotechnol Lett 21(7):611–616

    Article  Google Scholar 

  • Çakar ZP, Sauer U, Bailey JE, Müller M, Stolz M, Wallimann T, Schlattner U (2000) Vacuolar morphology and cell cycle distribution are modified by leucine limitation in auxotrophic Saccharomyces cerevisiae. Biol Cell 92(8–9):629–637. doi:10.1016/s0248-4900(01)01111-x

    Article  PubMed  Google Scholar 

  • Chopra R, Sharma VM, Ganesan K (1999) Elevated growth of Saccharomyces cerevisiae ATH1 null mutants on glucose is an artifact of nonmatching auxotrophies of mutant and reference strains. Appl Environ Microbiol 65(5):2267–2268

    CAS  PubMed  Google Scholar 

  • Cohen R, Engelberg D (2007) Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. FEMS Microbiol Lett 273(2):239–243

    Article  CAS  PubMed  Google Scholar 

  • Corbacho I, Olivero I, Hernández LM (2004) Identification of low-dye-binding (ldb) mutants of Saccharomyces cerevisiae. FEMS Yeast Res 4(4–5):437–444

    Article  CAS  PubMed  Google Scholar 

  • Corbacho I, Olivero I, Hernández LM (2005) A genome-wide screen for Saccharomyces cerevisiae nonessential genes involved in mannosyl phosphate transfer to mannoprotein-linked oligosaccharides. Fungal Genet Biol 42(9):773–790

    Article  CAS  PubMed  Google Scholar 

  • Crous JM, Pretorius IS, van Zyl WH (1996) Cloning and expression of the α–l -arabinofuranosidase gene (ABF 2) of Aspergillus niger in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 46(3):256–260

    Article  CAS  PubMed  Google Scholar 

  • Entian K-D, Kötter P (1998) Yeast mutant and plasmid collection. In: Brown JPA, Tuite MF (eds) Methods in Microbiology, vol 36. Elsevier B.V, Amsterdam, pp 431–449

    Google Scholar 

  • Goldstein AL H, McCusker J (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15(14):1541–1553

    Article  PubMed  Google Scholar 

  • Görgens JF, Planas JH, van Zyl WH, Knoetze J, Hahn-Hägerdal B (2004) Comparison of three expression systems for heterologous xylanase production by S cerevisiae in defined medium. Yeast 21(14):1205–1217

    Article  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Larsson C, Gorwa-Grauslund M, Gorgens J, van Zyl W (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Factories 4(1):31

    Article  PubMed  Google Scholar 

  • Harsch MJ, Soon AL, Goddard MR, Gardner RC (2009) Optimized fermentation of grape juice by laboratory strains of Saccharomyces cerevisiae. FEMS Yeast Res. doi:10.1111/j.1567-1364.2009.00580.x (in press)

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22(5):359–368

    Article  CAS  PubMed  Google Scholar 

  • la Grange DC, Pretorius IS, van Zyl WH (1996) Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62(3):1036–1044

    CAS  PubMed  Google Scholar 

  • Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68(5):2095–2100. doi:10.1128/aem.68.5.2095-2100.2002

    Article  CAS  PubMed  Google Scholar 

  • Pronk JT, Steensma HY, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607–1633

    Article  CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in Yeast genetics: a cold spring harbor laboratory course manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  • Shiba Y, Ono C, Fukui F, Watanabe I, Serizawa N, Gomi K, Yoshikawa H (2001) High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotechnol Biochem 65(1):94–101

    Article  CAS  PubMed  Google Scholar 

  • Smith V, Botstein D, Brown PO (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc Natl Acad Sci USA 92(14):6479–6483

    Article  CAS  PubMed  Google Scholar 

  • Smith V, Chou KN, Lashkari D, Botstein D, Brown PO (1996) Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274(5295):2069–2074. doi:10.1126/science.274.5295.2069

    Article  CAS  PubMed  Google Scholar 

  • van Dusen WJ, Fu J, Bailey FJ, Burke CJ, Herber WK, George HA (1997) Adenine quantitation in yeast extracts and fermentation media and its relationship to protein expression and cell growth in adenine auxotrophs of Saccharomyces cerevisiae. Biotechnol Prog 13(1):1–7

    Article  Google Scholar 

  • Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R (1994) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269(13):9833–9841

    CAS  PubMed  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11(1):53–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Reddy J, Buckland B, Greasham R (2003) Toward consistent and productive complex media for industrial fermentations: Studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82(6):640–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants 3PR05A096 and PRI07A087 co-financed by the Junta de Extremadura and FEDER. I. Corbacho, F. Teixidó and R. Velázquez are recipients of pre-doctoral studentships from the Junta de Extremadura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Olivero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbacho, I., Teixidó, F., Velázquez, R. et al. Standard YPD, even supplemented with extra nutrients, does not always compensate growth defects of Saccharomyces cerevisiae auxotrophic strains. Antonie van Leeuwenhoek 99, 591–600 (2011). https://doi.org/10.1007/s10482-010-9530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9530-5

Keywords

Navigation